Search results for "Tunnel"

showing 10 items of 576 documents

Superconductivity near a magnetic domain wall

2018

We study the equilibrium properties of a ferromagnetic insulator/superconductor structure near a magnetic domain wall. We show how the domain wall size is affected by the superconductivity in such structures. Moreover, we calculate several physical quantities altered due to the magnetic domain wall, such as the spin current density and local density of states, as well as the resulting tunneling conductance into a structure with a magnetic domain wall.

---Materials sciencesuprajohtavuusMagnetic domainFOS: Physical sciencesInsulator (electricity)02 engineering and technologymagnetic fieldsSpin currentmagneettikentätsuperconductors01 natural sciencessuprajohteetSuperconductivity (cond-mat.supr-con)Physics::Fluid DynamicsCondensed Matter::Superconductivity0103 physical sciences010306 general physicsPhysical quantitySuperconductivityTunneling conductanceLocal density of statesta114Condensed matter physicsCondensed Matter - Superconductivitysuperconductivity021001 nanoscience & nanotechnologyFerromagnetism0210 nano-technologyPhysical Review B
researchProduct

Design and analysis of non-linear circuit with tunnel diode for hybrid control systems

2018

Electric circuits with tunnel diode's represent a classical example of dynamic systems with nonlinearities, which feature piecewise negative damping and multiple equilibria and, as consequence, nontrivial trajectories in the state-space. In this paper, we describe the experimental design and analysis of an electrical circuit, including a tunnel diode, allowing for a storage behavior with bistable output voltage states - low and high. The system is modeled for simulation and an experimental setup is designed and implemented in order to run a formal verification on different tools, applying a variety of hybrid control methods. The nonlinear diode's characteristic curve is experimentally deter…

010302 applied physicsBistabilityComputer science020208 electrical & electronic engineering02 engineering and technology01 natural scienceslaw.inventionControl theorylawElectrical network0103 physical sciencesHardware_INTEGRATEDCIRCUITS0202 electrical engineering electronic engineering information engineeringPiecewiseTunnel diodeTransient responseHardware_LOGICDESIGNVoltageElectronic circuitDiode2018 IEEE 15th International Workshop on Advanced Motion Control (AMC)
researchProduct

Impact of Annealing Temperature on Tunneling Magnetoresistance Multilayer Stacks

2020

The effect of annealing temperatures on the tunnel magnetoresistance (TMR) of MgO-based magnetic tunnel junctions (MTJs) has been investigated for annealing between 190 and 370°C. The TMR shows a maximum value of 215% at an annealing temperature of 330°C. A strong sensitivity of the TMR and the exchange bias of the pinned ferromagnetic layers on the annealing temperature are observed. Depending on sensor application requirements, the MTJ can be optimized either for stability and pinning strength or for a high TMR signal by choosing the appropriate annealing temperature. The switching mechanism of the ferromagnetic layers in the MTJ and the influence of the annealing on the layer properties,…

010302 applied physicsMaterials scienceCondensed matter physicsMagnetoresistanceAnnealing (metallurgy)02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceTunnel magnetoresistanceExchange biasFerromagnetismCondensed Matter::Superconductivity0103 physical sciences0210 nano-technologyQuantum tunnellingIEEE Magnetics Letters
researchProduct

Morphological and magnetic analysis of Fe nanostructures on W(110) by using scanning tunneling microscopy and Lorentz microscopy

2016

Abstract We investigated morphological features and magnetic properties of epitaxial Fe nanostructures (films, stripes and nanoparticles) on a W(110) surface with monoatomic steps preferentially along the direction. The nanostructures were prepared in ultra-high vacuum by using electron-beam evaporation and subsequent annealing at different temperatures. Scanning tunneling microscopy measurements in-situ revealed elongated Fe nanostructures with aspect ratios of up to . The observable shape and orientation (along or perpendicular to the monoatomic steps of the substrate) of the nanostructures depended substantially on the preparation parameters. By capping the system with 7 monolayers of Pt…

010302 applied physicsMaterials scienceNanostructureCondensed matter physicsAnnealing (metallurgy)General EngineeringGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyEpitaxy01 natural scienceslaw.inventionMagnetic fieldCondensed Matter::Materials ScienceCrystallographyMagnetizationlaw0103 physical sciencesMonolayerSingle domainScanning tunneling microscope0210 nano-technologyJapanese Journal of Applied Physics
researchProduct

High-Performance Flexible Magnetic Tunnel Junctions for Smart Miniaturized Instruments

2018

010302 applied physicsMaterials sciencebusiness.industryElectrical engineering02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsSmart instruments01 natural sciencesFlexible electronicsTunnel magnetoresistanceReliability (semiconductor)0103 physical sciencesGeneral Materials Science0210 nano-technologybusinessAdvanced Engineering Materials
researchProduct

Simplified feedback control system for scanning tunneling microscopy

2021

A Scanning Tunneling Microscope (STM) is one of the most important scanning probe tools available to study and manipulate matter at the nanoscale. In a STM, a tip is scanned on top of a surface with a separation of a few \AA. Often, the tunneling current between tip and sample is maintained constant by modifying the distance between the tip apex and the surface through a feedback mechanism acting on a piezoelectric transducer. This produces very detailed images of the electronic properties of the surface. The feedback mechanism is nearly always made using a digital processing circuit separate from the user computer. Here we discuss another approach, using a computer and data acquisition thr…

010302 applied physicsSuperconductivityPhysics - Instrumentation and DetectorsMaterials sciencebusiness.industrySerial communicationFOS: Physical sciencesWeyl semimetalPort (circuit theory)Instrumentation and Detectors (physics.ins-det)01 natural sciencesPiezoelectricityNoise (electronics)law.inventionCondensed Matter - Other Condensed MatterData acquisitionlawCondensed Matter::Superconductivity0103 physical sciencesOptoelectronicsScanning tunneling microscope010306 general physicsbusinessInstrumentationOther Condensed Matter (cond-mat.other)Review of Scientific Instruments
researchProduct

A Local Study of the Transport Mechanisms in MoS2 Layers for Magnetic Tunnel Junctions

2018

MoS2-based vertical spintronic devices have attracted an increasing interest thanks to theoretical predictions of large magnetoresistance signals. However, experimental performances are still far from expectations. Here, we carry out the local electrical characterization of thin MoS2 flakes in a Co/Al2O3/MoS2 structure through conductive tip AFM measurements. We show that thin MoS2 presents a metallic behavior with a strong lateral transport contribution that hinders the direct tunnelling through thin layers. Indeed, no resistance dependence is observed with the flake thickness. These findings reveal a spin depolarization source in the MoS2-based spin valves, thus pointing to possible solut…

010302 applied physics[PHYS]Physics [physics]Thin layersMaterials scienceCondensed matter physicsMagnetoresistanceSpintronics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesLocal studyCharacterization (materials science)0103 physical sciencesGeneral Materials Science[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]0210 nano-technologyElectrical conductorQuantum tunnellingComputingMilieux_MISCELLANEOUSSpin-½
researchProduct

Influence of the MgO barrier thickness on the lifetime characteristics of magnetic tunnelling junctions for sensors

2016

Magnetic tunnelling junctions increasingly enter the market for magnetic sensor applications. Thus, technological parameters such as the lifetime characteristics become more and more important. Here, an analysis of the lifetime characteristics of magnetic tunnelling junctions using the Weibull statistical distribution for CoFeB/MgO/CoFeB junctions is presented. The Weibull distribution is governed by two parameters, the characteristic lifetime η of the population and the shape parameter β, which gives information about the presence of an infant mortality. The suitability of the Weibull distribution is demonstrated for the description of dielectric breakdown processes in MgO-based tunnelling…

010302 applied physicseducation.field_of_studyMaterials scienceAcoustics and UltrasonicsDielectric strengthCondensed matter physicsAnnealing (metallurgy)Population02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesShape parameterSurfaces Coatings and FilmsElectronic Optical and Magnetic Materials0103 physical sciences0210 nano-technologyeducationLow voltageQuantum tunnellingWeibull distributionVoltageJournal of Physics D: Applied Physics
researchProduct

Laser-induced enhancement of tunneling in NHD2

2012

We apply and explore techniques aiming at enhancing the tunneling by laser fields, originally developed for a one-dimensional model, to a complete six-dimensional vibrational model of the inversion motion in NHD(2). The computational study is performed with the multi-configuration time-dependent Hartree method. Assuming an ideal three-dimensional alignment we obtain a driven tunneling time twenty times smaller than the natural one, in rather good agreement with an oversimplified three-state model. In the case of one-dimensional alignment, a linearly polarized field leads to a poor enhancement of the tunneling probability, after averaging over the rotation about the alignment axis, whereas a…

010304 chemical physicsChemistryLinear polarizationScanning tunneling spectroscopyGeneral Physics and AstronomyHartreeLaser01 natural scienceslaw.invention[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrylaw0103 physical sciences[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryPhysical and Theoretical ChemistryAtomic physics010306 general physicsTunneling timeQuantum tunnellingComputingMilieux_MISCELLANEOUS
researchProduct

Gold/Isophorone Interaction Driven by Keto/Enol Tautomerization

2016

The binding behavior of isophorone (C9H14O) to Au adatoms and clusters deposited on MgO/Ag(001) thin films is investigated by scanning tunneling microscopy (STM) and density functional theory (DFT). The STM data reveal the formation of various metal/organic complexes, ranging from Au1/isophorone pairs to larger Au aggregates with molecules bound to their perimeter. DFT calculations find the energetically preferred keto-isophorone to be unreactive toward gold, while the enol-tautomer readily binds to Au monomers and clusters. The interaction is governed by electrostatic forces between the hydroxyl group of the enol and negative excess charges residing on the ad-gold. The activation barrier b…

010402 general chemistryPhotochemistry01 natural sciencesChemical reactionlaw.inventionchemistry.chemical_compoundlawketo-enol tautomerismgold compoundsMoleculePhysical and Theoretical Chemistryta116Isophoroneta114010405 organic chemistryKeto–enol tautomerismEnolTautomer0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsisophoroneGeneral EnergychemistryDensity functional theoryScanning tunneling microscopeJournal of Physical Chemistry C
researchProduct