Search results for "YEAST"

showing 10 items of 792 documents

Optimised method for the analysis of phenolic compounds from caper (Capparis spinosa L.) berries and monitoring of their changes during fermentation

2016

In this work, an ad hoc method to identify and quantify polyphenols from caper berries was developed on high-performance liquid chromatography/electrospray ionisation source/mass spectrometry (HPLC-ESI-MS). The method was applied during fermentation carried out with Lactobacillus pentosus OM13 (Trial S) and without starter (Trial C). A total of five polyphenols were identified. All samples contained high concentrations of rutin. Epicatechin was found in untreated fruits, on the contrary quercetin was detected during fermentation. Trial S was characterised by a more rapid acidification and lower levels of spoilage microorganisms than Trial C. L. pentosus dominated among the microbial communi…

0301 basic medicineCapparisPolyphenolRutin030106 microbiologySettore AGR/13 - Chimica AgrariaLactobacillus pentosusMass SpectrometryAnalytical Chemistry03 medical and health scienceschemistry.chemical_compoundRutin0404 agricultural biotechnologyfoodYeastsCaper berries Fermentation HPLC–ESI–MS Lactobacillus pentosus Polyphenols Starter culturesBotanyHPLC-ESI-MSFood scienceChromatography High Pressure LiquidbiologyCapparis spinosaLactobacillus pentosufood and beveragesPolyphenols04 agricultural and veterinary sciencesGeneral Medicinebiology.organism_classification040401 food sciencefood.foodCaper berrieAureobasidium pullulansCapparisLactobacillusStarter culturechemistryPolyphenolFruitFermentationCaper berries; Fermentation; HPLC-ESI-MS; Lactobacillus pentosus; Polyphenols; Starter cultures; Food Science; Analytical ChemistryFermentationQuercetinFood ScienceSettore AGR/16 - Microbiologia Agraria
researchProduct

Comparative study of eco- and cytotoxicity during biotransformation of anthraquinone dye Alizarin Blue Black B in optimized cultures of microscopic f…

2017

The aim of this study was to select optimal conditions (C and N sources, initial pH and temperature) for biodecolorization of 0.03% anthraquinone dye Alizarin Blue Black B (ABBB) by microscopic fungi: Haematonectria haematococca BwIII43, K37 and Trichoderma harzianum BsIII33. The phenolic compounds, phytotoxicity (Lepidium sativum L.), biotoxicity (Microtox), cytotoxicity and yeast viability assay were performed to determine the extent of ABBB detoxification. Biodecolorization and detoxification of 0.03% ABBB in H. haematococca BwIII43 and T. harzianum BsIII33 cultures was correlated with extracellular oxidoreductases activity. In turn, secondary products, toxic to human fibroblasts and res…

0301 basic medicineCell SurvivalHealth Toxicology and MutagenesisAnthraquinones010501 environmental sciencesAlizarin01 natural sciencesLepidium sativumCell LineWater Purification03 medical and health scienceschemistry.chemical_compoundBiotransformationYeastsToxicity TestsHumansBiodecolorizationViability assayColoring AgentsCytotoxicityBiotransformationYeast model0105 earth and related environmental sciencesbiologyProoxidative toxicityPublic Health Environmental and Occupational HealthTrichoderma harzianumGeneral Medicinebiology.organism_classificationPollutionYeastHaematonectria haematococcaBiodegradation Environmental030104 developmental biologyBiochemistrychemistryPhytotoxicityDetoxificationOxidoreductasesOxidation-ReductionWater Pollutants ChemicalEcotoxicology and Environmental Safety
researchProduct

Defining Human Tyrosine Kinase Phosphorylation Networks Using Yeast as an In Vivo Model Substrate.

2017

Systematic assessment of tyrosine kinase-substrate relationships is fundamental to a better understanding of cellular signaling and its profound alterations in human diseases such as cancer. In human cells, such assessments are confounded by complex signaling networks, feedback loops, conditional activity, and intra-kinase redundancy. Here we address this challenge by exploiting the yeast proteome as an in vivo model substrate. We individually expressed 16 human non-receptor tyrosine kinases (NRTKs) in Saccharomyces cerevisiae and identified 3,279 kinase-substrate relationships involving 1,351 yeast phosphotyrosine (pY) sites. Based on the yeast data without prior information, we generated …

0301 basic medicineCell signalingHistologySaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaeAmino Acid MotifsSaccharomyces cerevisiaeInteractomeReceptor tyrosine kinaseArticlePathology and Forensic Medicine03 medical and health scienceschemistry.chemical_compoundHumansProtein Interaction MapsPhosphorylationbiologyTyrosine phosphorylationCell BiologyProtein-Tyrosine Kinasesbiology.organism_classificationYeastCell biology030104 developmental biologychemistrybiology.proteinPhosphorylationTyrosine kinaseSequence AlignmentCell systems
researchProduct

Anhydrobiosis and Dehydration of Yeasts

2017

Anhydrobiosis is a unique phenomenon of nature which gives possibility to various live organisms to survive during very hot and dry seasons of the year. It is the state in which all processes of metabolism are temporarily reversibly suspended as the result of strong dehydration of the cells. The state of anhydrobiosis is used for industrial production of active dry yeasts. Results of detailed studies of mechanisms of anhydrobiosis and of changes in the cells which take place during their drying by different methods help to improve the dehydration resistance of yeast strains necessary in traditional and nonconventional biotechnologies. The progress which has been made in these researches wit…

0301 basic medicineChemistry030106 microbiologymedicine.diseaseYeast03 medical and health sciences030104 developmental biologyDehydration rehydrationBiochemistryLive organismsmedicineDehydrationCryptobiosisIntracellular organelles
researchProduct

A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export.

2018

17 páginas, 12 figuras.

0301 basic medicineChromatin ImmunoprecipitationSaccharomyces cerevisiae ProteinsTranscription GeneticSaccharomyces cerevisiaeBiologyyeastEpigenetic RepressionBiochemistryRNA TransportHistones03 medical and health sciencesHistone H30302 clinical medicineTranscription (biology)Gene Expression Regulation FungalGeneticsHistone H2BMonoubiquitinationEpigeneticsRNA MessengerMolecular BiologyGenemRNA exportepigeneticsUbiquitinationMethylationArticlesTATA-Box Binding ProteinYeastCell biology030104 developmental biologyran GTP-Binding ProteinH3K4me3EpigeneticsRNA Polymerase IItranscriptionTranscription030217 neurology & neurosurgeryH2B ubiquitinationEMBO reports
researchProduct

Aneuploidy and Ethanol Tolerance in Saccharomyces cerevisiae

2019

Response to environmental stresses is a key factor for microbial organism growth. One of the major stresses for yeasts in fermentative environments is ethanol. Saccharomyces cerevisiae is the most tolerant species in its genus, but intraspecific ethanol-tolerance variation exists. Although, much effort has been done in the last years to discover evolutionary paths to improve ethanol tolerance, this phenotype is still hardly understood. Here, we selected five strains with different ethanol tolerances, and used comparative genomics to determine the main factors that can explain these phenotypic differences. Surprisingly, the main genomic feature, shared only by the highest ethanol-tolerant st…

0301 basic medicineChromosome IIIlcsh:QH426-470Saccharomyces cerevisiaeAneuploidycomparative genomicsSaccharomyces cerevisiaeEthanol toleranceBiologyTranscriptome03 medical and health sciences0302 clinical medicineGeneticsmedicineaneuploidyGenetics (clinical)Wine yeastsGeneticsComparative genomicsComparative genomicsStrain (biology)chromosome IIIChromosomewine yeastsAneuploidybiology.organism_classificationmedicine.diseasePhenotypeethanol tolerancelcsh:Genetics030104 developmental biology030220 oncology & carcinogenesisMolecular MedicinePloidyFrontiers in Genetics
researchProduct

Deep learning architectures for prediction of nucleosome positioning from sequences data

2018

Abstract Background Nucleosomes are DNA-histone complex, each wrapping about 150 pairs of double-stranded DNA. Their function is fundamental for one of the primary functions of Chromatin i.e. packing the DNA into the nucleus of the Eukaryote cells. Several biological studies have shown that the nucleosome positioning influences the regulation of cell type-specific gene activities. Moreover, computational studies have shown evidence of sequence specificity concerning the DNA fragment wrapped into nucleosomes, clearly underlined by the organization of particular DNA substrings. As the main consequence, the identification of nucleosomes on a genomic scale has been successfully performed by com…

0301 basic medicineComputer scienceCellBiochemistrychemistry.chemical_compound0302 clinical medicineStructural Biologylcsh:QH301-705.5Nucleosome classificationSequenceSettore INF/01 - InformaticabiologyApplied MathematicsEpigeneticComputer Science ApplicationsChromatinNucleosomesmedicine.anatomical_structurelcsh:R858-859.7EukaryoteDNA microarrayDatabases Nucleic AcidComputational biologySaccharomyces cerevisiaelcsh:Computer applications to medicine. Medical informatics03 medical and health sciencesDeep LearningmedicineNucleosomeAnimalsHumansEpigeneticsMolecular BiologyGeneBase Sequencebusiness.industryDeep learningResearchReproducibility of Resultsbiology.organism_classificationYeastNucleosome classification Epigenetic Deep learning networks Recurrent neural networks030104 developmental biologylcsh:Biology (General)chemistryRecurrent neural networksROC CurveDeep learning networksArtificial intelligenceNeural Networks Computerbusiness030217 neurology & neurosurgeryDNABMC Bioinformatics
researchProduct

Starter cultures as biocontrol strategy to prevent Brettanomyces bruxellensis proliferation in wine

2017

Brettanomyces bruxellensis is a common and significant wine spoilage microorganism. B. bruxellensis strains generally detain the molecular basis to produce compounds that are detrimental for the organoleptic quality of the wine, including some classes of volatile phenols that derive from the sequential bioconversion of specific hydroxycinnamic acids such as ferulate and p-coumarate. Although B. bruxellensis can be detected at any stage of the winemaking process, it is typically isolated at the end of the alcoholic fermentation (AF), before the staring of the spontaneous malolactic fermentation (MLF) or during barrel aging. For this reason, the endemic diffusion of B. bruxellensis leads to c…

0301 basic medicineCoumaric Acids030106 microbiologyFood spoilageOrganolepticMalatesBrettanomyces bruxellensisBrettanomycesWineFood ContaminationSaccharomyces cerevisiaeEthanol fermentationApplied Microbiology and Biotechnology03 medical and health sciencesSaccharomycesmalolactic fermentation (MLF)PhenolsLactobacillalesMalolactic fermentationLactic acid bacteriaVitisFood scienceWinemakingWinebiologyBrettanomyces bruxellensis; Wine; Saccharomyces; malolactic fermentation (MLF); Lactic acid bacteriadigestive oral and skin physiologyfood and beveragesGeneral MedicineMini-Reviewbiology.organism_classificationYeastBrettanomyces bruxellensisBiological Control AgentsAlcoholsFermentationFood MicrobiologyMLFSettore AGR/16 - Microbiologia AgrariaBiotechnologyApplied Microbiology and Biotechnology
researchProduct

Yeast trehalases: Two enzymes, one catalytic mission

2016

Abstract Background Trehalose is a non-reducing disaccharide highly conserved throughout evolution. In yeasts, trehalose hydrolysis is confined to the enzyme trehalase, an α-glucosidase specific for trehalose as sole substrate. Two kinds of trehalase activity exist in yeasts: neutral and acid enzymes. Scope of the review This review makes a comparative survey of the main biochemical and genetic parameters, regulatory systems, tridimensional structure and catalytic mechanism of the two yeast trehalases. Major conclusions The yeast neutral and acid trehalases display sharp differences in biochemical features (optimum pH, Mr or amino acid sequence) physiological roles, subcellular location (cy…

0301 basic medicineCytoplasm030106 microbiologyBiophysicsCatabolite repressionTrehalase activitySaccharomyces cerevisiaeBiologyBiochemistryCatalysis03 medical and health scienceschemistry.chemical_compoundCell WallTrehalaseTrehalaseMolecular BiologyPeptide sequencechemistry.chemical_classificationHydrolysisTrehaloseTrehaloseYeastCytosol030104 developmental biologyEnzymechemistryBiochemistryBiochimica et Biophysica Acta (BBA) - General Subjects
researchProduct

Cells-qPCR as a direct quantitative PCR method to avoid microbial DNA extractions in grape musts and wines.

2017

A novel quantitative PCR assay called Cells-qPCR has been developed for the rapid detection and quantification of yeasts, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) directly from grape must and wine that does not require DNA extraction. The assay was tested on Brettanomyces bruxellensis, Saccharomyces cerevisiae, Lactobacillus plantarum, Oenococcus oeni, Acetobacter aceti and Gluconobacter oxydans in culture media, and in white and red grape musts and wines. Standard curves were constructed from DNA and cells for the six target species in all the matrices. Good efficiencies were obtained for both when comparing DNA and cells standard curves. No reaction inhibition was observe…

0301 basic medicineDNA Bacterial030106 microbiologyBrettanomyces bruxellensisWineReal-Time Polymerase Chain ReactionMicrobiologyMicrobiology03 medical and health sciencesYeastsAcetobacterVitisAcetic acid bacteriaDNA FungalOenococcusOenococcus oeniAcetobacter acetiWineChromatographybiologyfood and beveragesGeneral Medicinebiology.organism_classificationDNA extractionFermentationAcetobacterOenococcusFood ScienceLactobacillus plantarumInternational journal of food microbiology
researchProduct