Search results for "adiation effects"
showing 10 items of 97 documents
Time resolved photoluminescence associated with non-bridging oxygen hole centers in irradiated silica
2008
Abstract We report time resolved photoluminescence spectra of irradiated silica under excitation with a laser tunable in the visible and UV range. The investigated samples exhibit the emission band at 1.9 eV associated with non-bridging oxygen hole centers, whose spectral and kinetics properties do not depend on the kind of irradiation (γ, β and neutrons). The 1.9 eV luminescence decay follows a multi-exponential curve with a characteristic lifetime that increases from 8.9 μs to 10.4 μs on increasing the emission energy. This dependence accounts for the blue-shift of the emission band during its decay and is interpreted as due to the inhomogeneous properties of silica leading to a distribut…
Influence of the manufacturing process on the radiation sensitivity of fluorine-doped silica-based optical fibers
2011
International audience; In this work, we analyze the origins of the observed differences between the radiation sensitivities of fluorine-doped optical fibers made with different fabrication processes. We used several experimental techniques, coupling in situ radiation-induced absorption measurements with post mortem confocal microscopy luminescence measurements. Our data showed that the silica intrinsic defects are generated both from precursor sites and from strained regular Si-O-Si linkages. Our work also provides evidence for the preponderant role of the chlorine in determining the optical losses at about 3.5 eV. The results show that the manufacturing process of these fibers strongly af…
Irradiation induced defects in fluorine doped silica
2008
International audience; The role of fluorine doping in the response to UV pulsed laser and c radiation of silica preforms and fibers was studied using electron spin resonance (ESR) spectroscopy. Exposure to radiation mainly generates E0 centers, with the same effectiveness in fibers and in preforms. The E'concentration in F-doped silica fibers is found to increase with UV energy fluence till a saturation value, consistently with a precursor conversion process. These results show the fluorine role in reducing the strained Si–O bonds thus improving the radiation hardness of silica, also after drawing process.
Electron-Induced Upsets and Stuck Bits in SDRAMs in the Jovian Environment
2021
This study investigates the response of synchronous dynamic random access memories to energetic electrons and especially the possibility of electrons to cause stuck bits in these memories. Three different memories with different node sizes (63, 72, and 110 nm) were tested. Electrons with energies between 6 and 200 MeV were used at RADiation Effects Facility (RADEF) in Jyvaskyla, Finland, and at Very energetic Electron facility for Space Planetary Exploration missions in harsh Radiative environments (VESPER) in The European Organization for Nuclear Research (CERN), Switzerland. Photon irradiation was also performed in Jyvaskyla. In these irradiation tests, stuck bits originating from electro…
Effect of 20 MeV Electron Radiation on Long Term Reliability of SiC Power MOSFETs
2023
The effect of 20 MeV electron radiation on the lifetime of the silicon carbide power MOSFETs was investigated. Accelerated constant voltage stress (CVS) was applied on the pristine and irradiated devices and time-to-breakdown ( T BD ) and charge-to-breakdown ( Q BD ) of gate oxide were extracted and compared. The effect of electron radiation on the device lifetime reduction can be observed at lower stress gate-to-source voltage ( V GS ) levels. The models of T BD and Q BD dependence on the initial gate current ( I G0 ) are proposed which can be used to describe the device breakdown behaviour. peerReviewed
Radiation Hardened Optical Frequency Domain Reflectometry Distributed Temperature Fiber-Based Sensors
2015
International audience; We study the performance of Optical Frequency Domain Reflectometry (OFDR) distributed temperature sensors using radiation resistant single-mode optical fibers. In situ experiments under 10 keV X-rays exposure up to 1 MGy( SiO 2 ) were carried out with an original setup that allows to investigate combined temperature and radiation effects on the sensors within a temperature range from 30 ° C to 250 ° C. Obtained results demonstrate that optical fiber sensors based on Rayleigh technique are almost unaffected by radiation up to the explored doses. We show that a pre-thermal treatment stabilize the sensor performance increasing the accuracy on temperature measurement fro…
Proton irradiation-induced reliability degradation of SiC power MOSFET
2023
The effect of 53 MeV proton irradiation on the reliability of silicon carbide power MOSFETs was investigated. Post-irradiation gate voltage stress was applied and early failures in time-dependent dielectric breakdown (TDDB) test were observed for irradiated devices. The applied drain voltage during irradiation affects the degradation probability observed by TDDB tests. Proton-induced single event burnouts (SEB) were observed for devices which were biased close to their maximum rated voltage. The secondary particle production as a result of primary proton interaction with the device material was simulated with the Geant4-based toolkit. peerReviewed
Radiation hardening techniques for rare-earth-based optical fibers and amplifiers
2012
Er/Yb doped fibers and amplifiers have been shown to be very radiation sensitive, limiting their integration in space. We present an approach including successive hardening techniques to enhance their radiation tolerance. The efficiency of our approach is demonstrated by comparing the radiation responses of optical amplifiers made with same lengths of different rare-earth doped fibers and exposed to gamma-rays. Previous studies indicated that such amplifiers suffered significant degradation for doses exceeding 10 krad. Applying our techniques significantly enhances the amplifier radiation resistance, resulting in a very limited degradation up to 50 krad. Our optimization techniques concern …
Coupled irradiation-temperature effects on induced point defects in germanosilicate optical fibers
2017
International audience; We investigated the combined effects of temperature and X-rays exposures on the nature of point defects generated in Ge-doped multimode optical fibers. Electron paramagnetic resonance (EPR) results on samples X-ray irradiated at 5 kGy(SiO2), employing different temperatures and dose rates, are reported and discussed. The data highlight the generation of the Ge(1), Ge(2), E0 Ge and E0 Si defects. For the Ge(1) and Ge(2), we observed a decrease in the induced defect concentrations for irradiation temperatures higher than *450 K, whereas the E0 defects feature an opposite tendency. The comparison with previous post-irradiation thermal treatments reveals peculiar effects…
X-ray irradiation effects on a multistep Ge-doped silica fiber produced using different drawing conditions
2011
International audience; We report an experimental study based on confocal microscopy luminescence (CML) and electron paramagnetic resonance (EPR) measurements to investigate the effects of the X-ray (from 50 krad to 200 Mrad) on three specific multistep Ge doped fibers obtained from the same preform by changing some of the drawing conditions (tension and speed). CML data show that, both before and after the irradiation, Germanium Lone Pair Center (GLPC) concentrations are similarly distributed along the diameters of the three fibers and they are partially reduced by irradiation. The irradiation induces also the Non Bridging Oxygen Hole Center (NBOHC) investigated by CML and other paramagnet…