Search results for "bayesian"

showing 10 items of 604 documents

On the convenience of heteroscedasticity in highly multivariate disease mapping

2019

Highly multivariate disease mapping has recently been proposed as an enhancement of traditional multivariate studies, making it possible to perform the joint analysis of a large number of diseases. This line of research has an important potential since it integrates the information of many diseases into a single model yielding richer and more accurate risk maps. In this paper we show how some of the proposals already put forward in this area display some particular problems when applied to small regions of study. Specifically, the homoscedasticity of these proposals may produce evident misfits and distorted risk maps. In this paper we propose two new models to deal with the variance-adaptiv…

Statistics and ProbabilityHeteroscedasticityMultivariate statisticsComputer scienceDiseaseJoint analysisMachine learningcomputer.software_genreBayesian statistics01 natural sciencesGaussian Markov random fields010104 statistics & probability03 medical and health sciences0302 clinical medicineHomoscedasticity0101 mathematicsMultivariate disease mappingSpatial analysisMortality studiesInterpretation (logic)Spatial statisticsbusiness.industryBayesian statisticsEstadística bayesianaMalalties030211 gastroenterology & hepatologyArtificial intelligenceStatistics Probability and Uncertaintybusinesscomputer
researchProduct

Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo

2020

We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the MCMC typically operates on the hyperparameters, and the subsequent weighting may be based on IS or sequential Monte Carlo (SMC), but allows for multilevel techniques as well. The IS approach provides a natural alternative to delayed acceptance (DA) pseudo-marginal/particle MCMC, and has many advantages over DA, including a straightforward parallelisation and additional flexibility in MCMC implementation. We detail minimal conditions which ensure strong consistency of the sug…

Statistics and ProbabilityHyperparameter05 social sciencesBayesian probabilityStrong consistencyEstimatorContext (language use)Markov chain Monte Carlo01 natural sciencesStatistics::Computation010104 statistics & probabilitysymbols.namesake0502 economics and businesssymbols0101 mathematicsStatistics Probability and UncertaintyParticle filterAlgorithmImportance sampling050205 econometrics MathematicsScandinavian Journal of Statistics
researchProduct

Bayesian assessment of times to diagnosis in breast cancer screening

2008

Breast cancer is one of the diseases with the most profound impact on health in developed countries and mammography is the most popular method for detecting breast cancer at a very early stage. This paper focuses on the waiting period from a positive mammogram until a confirmatory diagnosis is carried out in hospital. Generalized linear mixed models are used to perform the statistical analysis, always within the Bayesian reasoning. Markov chain Monte Carlo algorithms are applied for estimation by simulating the posterior distribution of the parameters and hyperparameters of the model through the free software WinBUGS.

Statistics and ProbabilityHyperparametermedicine.diagnostic_testbusiness.industryComputer scienceMarkov chain Monte CarloMachine learningcomputer.software_genreBayesian inferencemedicine.diseaseGeneralized linear mixed modelBayesian statisticsBreast cancer screeningsymbols.namesakeBreast cancerStatisticsmedicinesymbolsMammographyArtificial intelligenceStatistics Probability and UncertaintybusinesscomputerJournal of Applied Statistics
researchProduct

Intrinsic credible regions: An objective Bayesian approach to interval estimation

2005

This paper definesintrinsic credible regions, a method to produce objective Bayesian credible regions which only depends on the assumed model and the available data.Lowest posterior loss (LPL) regions are defined as Bayesian credible regions which contain values of minimum posterior expected loss: they depend both on the loss function and on the prior specification. An invariant, information-theory based loss function, theintrinsic discrepancy is argued to be appropriate for scientific communication. Intrinsic credible regions are the lowest posterior loss regions with respect to the intrinsic discrepancy loss and the appropriate reference prior. The proposed procedure is completely general…

Statistics and ProbabilityInterval estimationBayesian probabilityConfidence intervalsymbols.namesakeFrequentist inferenceStatisticssymbolsCredible intervalApplied mathematicsPoint estimationStatistics Probability and UncertaintyFisher informationExpected lossMathematicsTEST
researchProduct

A Knowledge Management and Decision Support Model for Enterprises

2011

We propose a novel knowledge management system (KMS) for enterprises. Our system exploits two different approaches for knowledge representation and reasoning: a document-based approach based on data-driven creation of a semantic space and an ontology-based model. Furthermore, we provide an expert system capable of supporting the enterprise decisional processes and a semantic engine which performs intelligent search on the enterprise knowledge bases. The decision support process exploits the Bayesian networks model to improve business planning process when performed under uncertainty. Copyright © 2011 Patrizia Ribino et al.

Statistics and ProbabilityKnowledge Management SystemsSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniDecision support systemKnowledge managementArticle SubjectKnowledge representation and reasoningExploitProcess (engineering)business.industryComputer sciencelcsh:MathematicsApplied MathematicsGeneral Decision SciencesBayesian networkOntology (information science)lcsh:QA1-939computer.software_genreExpert systemComputational MathematicsKnowledge-based systemsbusinesscomputer
researchProduct

Prior-based Bayesian information criterion

2019

We present a new approach to model selection and Bayes factor determination, based on Laplace expansions (as in BIC), which we call Prior-based Bayes Information Criterion (PBIC). In this approach, the Laplace expansion is only done with the likelihood function, and then a suitable prior distribution is chosen to allow exact computation of the (approximate) marginal likelihood arising from the Laplace approximation and the prior. The result is a closed-form expression similar to BIC, but now involves a term arising from the prior distribution (which BIC ignores) and also incorporates the idea that different parameters can have different effective sample sizes (whereas BIC only allows one ov…

Statistics and ProbabilityLaplace expansionApplied MathematicsBayes factorMarginal likelihoodStatistics::Computationsymbols.namesakeComputational Theory and MathematicsLaplace's methodBayesian information criterionPrior probabilitysymbolsApplied mathematicsStatistics::MethodologyStatistics Probability and UncertaintyLikelihood functionFisher informationAnalysisMathematics
researchProduct

Bayesian analysis of a disability model for lung cancer survival

2016

Bayesian reasoning, survival analysis and multi-state models are used to assess survival times for Stage IV non-small-cell lung cancer patients and the evolution of the disease over time. Bayesian estimation is done using minimum informative priors for the Weibull regression survival model, leading to an automatic inferential procedure. Markov chain Monte Carlo methods have been used for approximating posterior distributions and the Bayesian information criterion has been considered for covariate selection. In particular, the posterior distribution of the transition probabilities, resulting from the multi-state model, constitutes a very interesting tool which could be useful to help oncolog…

Statistics and ProbabilityLung NeoplasmsEpidemiologyComputer scienceMatemáticasPosterior probabilityBayesian probabilityEstadísticaBiostatisticsAccelerated failure time modelsBayesian inference01 natural sciences010104 statistics & probability03 medical and health sciencesBayes' theoremsymbols.namesake0302 clinical medicineHealth Information ManagementBayesian information criterionCarcinoma Non-Small-Cell LungStatisticsPrior probabilityHumans0101 mathematicsBiología y BiomedicinaNeoplasm StagingInformáticaBayes estimatorBayes TheoremMarkov chain Monte CarloSurvival AnalysisBayesian information criterionMarkov Chains030220 oncology & carcinogenesisMinimum informative priorsymbolsMulti-state modelsRegression AnalysisWeibull distributionMonte Carlo Method
researchProduct

MCMC methods to approximate conditional predictive distributions

2006

Sampling from conditional distributions is a problem often encountered in statistics when inferences are based on conditional distributions which are not of closed-form. Several Markov chain Monte Carlo (MCMC) algorithms to simulate from them are proposed. Potential problems are pointed out and some suitable modifications are suggested. Approximations based on conditioning sets are also explored. The issues are illustrated within a specific statistical tool for Bayesian model checking, and compared in an example. An example in frequentist conditional testing is also given.

Statistics and ProbabilityMarkov chainApplied MathematicsMarkov chain Monte CarloConditional probability distributionBayesian inferenceComputational Mathematicssymbols.namesakeMetropolis–Hastings algorithmComputational Theory and MathematicsSampling distributionFrequentist inferencesymbolsEconometricsAlgorithmMathematicsGibbs samplingComputational Statistics & Data Analysis
researchProduct

Bayesian Mapping of Lichens Growing on Trees

2001

Suitability of trees as hosts for epiphytic lichens are studied in a forest stand of size 25 ha. Suitability is measured as occupation probabilites which are modelled using hierarchical Bayesian approach. These probabilities are useful for an ecologist. They give smoothed spatial distribution map of suitability for each of the species and can be used in detecting high- and low-probability areas. In addition, suitability is explained by tree-level covariates. Spatial dependence, which is due to unobserved spatially structured covariates, is modelled through an unobserved Markov random field. Markov chain Monte Carlo method has been applied in Bayesian computation. The extensive spatial data …

Statistics and ProbabilityMarkov chainbiologyBayesian probabilityDiameter at breast heightMarkov chain Monte CarloGeneral Medicinebiology.organism_classificationsymbols.namesakeStatisticsCovariatesymbolsStatistics Probability and UncertaintySpatial dependenceSpatial analysisMathematicsLobaria pulmonariaBiometrical Journal
researchProduct

Criteria for Bayesian model choice with application to variable selection

2012

In objective Bayesian model selection, no single criterion has emerged as dominant in defining objective prior distributions. Indeed, many criteria have been separately proposed and utilized to propose differing prior choices. We first formalize the most general and compelling of the various criteria that have been suggested, together with a new criterion. We then illustrate the potential of these criteria in determining objective model selection priors by considering their application to the problem of variable selection in normal linear models. This results in a new model selection objective prior with a number of compelling properties.

Statistics and ProbabilityMathematical optimization62C10Model selectiong-priorLinear modelMathematics - Statistics TheoryFeature selectionStatistics Theory (math.ST)Model selectionBayesian inferenceObjective model62J05Prior probability62J15FOS: MathematicsStatistics Probability and Uncertaintyobjective BayesSelection (genetic algorithm)variable selectionMathematicsThe Annals of Statistics
researchProduct