Search results for "bayesian"
showing 10 items of 604 documents
On the convenience of heteroscedasticity in highly multivariate disease mapping
2019
Highly multivariate disease mapping has recently been proposed as an enhancement of traditional multivariate studies, making it possible to perform the joint analysis of a large number of diseases. This line of research has an important potential since it integrates the information of many diseases into a single model yielding richer and more accurate risk maps. In this paper we show how some of the proposals already put forward in this area display some particular problems when applied to small regions of study. Specifically, the homoscedasticity of these proposals may produce evident misfits and distorted risk maps. In this paper we propose two new models to deal with the variance-adaptiv…
Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo
2020
We consider importance sampling (IS) type weighted estimators based on Markov chain Monte Carlo (MCMC) targeting an approximate marginal of the target distribution. In the context of Bayesian latent variable models, the MCMC typically operates on the hyperparameters, and the subsequent weighting may be based on IS or sequential Monte Carlo (SMC), but allows for multilevel techniques as well. The IS approach provides a natural alternative to delayed acceptance (DA) pseudo-marginal/particle MCMC, and has many advantages over DA, including a straightforward parallelisation and additional flexibility in MCMC implementation. We detail minimal conditions which ensure strong consistency of the sug…
Bayesian assessment of times to diagnosis in breast cancer screening
2008
Breast cancer is one of the diseases with the most profound impact on health in developed countries and mammography is the most popular method for detecting breast cancer at a very early stage. This paper focuses on the waiting period from a positive mammogram until a confirmatory diagnosis is carried out in hospital. Generalized linear mixed models are used to perform the statistical analysis, always within the Bayesian reasoning. Markov chain Monte Carlo algorithms are applied for estimation by simulating the posterior distribution of the parameters and hyperparameters of the model through the free software WinBUGS.
Intrinsic credible regions: An objective Bayesian approach to interval estimation
2005
This paper definesintrinsic credible regions, a method to produce objective Bayesian credible regions which only depends on the assumed model and the available data.Lowest posterior loss (LPL) regions are defined as Bayesian credible regions which contain values of minimum posterior expected loss: they depend both on the loss function and on the prior specification. An invariant, information-theory based loss function, theintrinsic discrepancy is argued to be appropriate for scientific communication. Intrinsic credible regions are the lowest posterior loss regions with respect to the intrinsic discrepancy loss and the appropriate reference prior. The proposed procedure is completely general…
A Knowledge Management and Decision Support Model for Enterprises
2011
We propose a novel knowledge management system (KMS) for enterprises. Our system exploits two different approaches for knowledge representation and reasoning: a document-based approach based on data-driven creation of a semantic space and an ontology-based model. Furthermore, we provide an expert system capable of supporting the enterprise decisional processes and a semantic engine which performs intelligent search on the enterprise knowledge bases. The decision support process exploits the Bayesian networks model to improve business planning process when performed under uncertainty. Copyright © 2011 Patrizia Ribino et al.
Prior-based Bayesian information criterion
2019
We present a new approach to model selection and Bayes factor determination, based on Laplace expansions (as in BIC), which we call Prior-based Bayes Information Criterion (PBIC). In this approach, the Laplace expansion is only done with the likelihood function, and then a suitable prior distribution is chosen to allow exact computation of the (approximate) marginal likelihood arising from the Laplace approximation and the prior. The result is a closed-form expression similar to BIC, but now involves a term arising from the prior distribution (which BIC ignores) and also incorporates the idea that different parameters can have different effective sample sizes (whereas BIC only allows one ov…
Bayesian analysis of a disability model for lung cancer survival
2016
Bayesian reasoning, survival analysis and multi-state models are used to assess survival times for Stage IV non-small-cell lung cancer patients and the evolution of the disease over time. Bayesian estimation is done using minimum informative priors for the Weibull regression survival model, leading to an automatic inferential procedure. Markov chain Monte Carlo methods have been used for approximating posterior distributions and the Bayesian information criterion has been considered for covariate selection. In particular, the posterior distribution of the transition probabilities, resulting from the multi-state model, constitutes a very interesting tool which could be useful to help oncolog…
MCMC methods to approximate conditional predictive distributions
2006
Sampling from conditional distributions is a problem often encountered in statistics when inferences are based on conditional distributions which are not of closed-form. Several Markov chain Monte Carlo (MCMC) algorithms to simulate from them are proposed. Potential problems are pointed out and some suitable modifications are suggested. Approximations based on conditioning sets are also explored. The issues are illustrated within a specific statistical tool for Bayesian model checking, and compared in an example. An example in frequentist conditional testing is also given.
Bayesian Mapping of Lichens Growing on Trees
2001
Suitability of trees as hosts for epiphytic lichens are studied in a forest stand of size 25 ha. Suitability is measured as occupation probabilites which are modelled using hierarchical Bayesian approach. These probabilities are useful for an ecologist. They give smoothed spatial distribution map of suitability for each of the species and can be used in detecting high- and low-probability areas. In addition, suitability is explained by tree-level covariates. Spatial dependence, which is due to unobserved spatially structured covariates, is modelled through an unobserved Markov random field. Markov chain Monte Carlo method has been applied in Bayesian computation. The extensive spatial data …
Criteria for Bayesian model choice with application to variable selection
2012
In objective Bayesian model selection, no single criterion has emerged as dominant in defining objective prior distributions. Indeed, many criteria have been separately proposed and utilized to propose differing prior choices. We first formalize the most general and compelling of the various criteria that have been suggested, together with a new criterion. We then illustrate the potential of these criteria in determining objective model selection priors by considering their application to the problem of variable selection in normal linear models. This results in a new model selection objective prior with a number of compelling properties.