Search results for "bilayer"

showing 10 items of 391 documents

Negatively Charged Gangliosides Promote Membrane Association of Amphipathic Neurotransmitters

2018

Lipophilic neurotransmitters (NTs) such as dopamine are chemical messengers enabling neurotransmission by adhering onto the extracellular surface of the post-synaptic membrane in a synapse, followed by binding to their receptors. Previous studies have shown that the strength of the NT-membrane association is dependent on the lipid composition of the membrane. Negatively charged lipids such as phosphatidylserine, phosphatidylglycerol, and phosphatidic acid have been indicated to promote NT-membrane binding, however these anionic lipids reside almost exclusively in the intracellular leaflet of the post-synaptic membrane instead of the extracellular leaflet facing the synaptic cleft. Meanwhile…

0301 basic medicineMOLECULAR-DYNAMICS SIMULATIONSBIOMOLECULAR SYSTEMSkolesteroliasetyylikoliiniSynaptic TransmissionsolukalvotCell membranechemistry.chemical_compoundSCHIZOPHRENIAmolekyylidynamiikkamolecular dynamics (MD)neurotransmissionvälittäjäaineetChemistryLIPID-MEMBRANESGeneral NeurosciencePhosphatidylserineALZHEIMERS-DISEASEMembranemedicine.anatomical_structureHAMILTONIAN REPLICA EXCHANGElipids (amino acids peptides and proteins)dopamineIntracellularneurotransmittermonosialotetrahexosylganglioside (GM1)Synaptic cleftG(M1) GangliosideMolecular Dynamics SimulationNeurotransmission03 medical and health sciencesExtracellularmedicineAnimalsmonosialotetrahexosylgangliosidebinding free energyPhosphatidylglyceroldopamiiniBinding SitesCell Membranehistamiini3112 Neurosciencesta1182cholesterolBILAYERhistamineacetylcholinehermosolut030104 developmental biologyFORCE-FIELDBiophysicssynapsit
researchProduct

Mg2+ binding triggers rearrangement of the IM30 ring structure, resulting in augmented exposure of hydrophobic surfaces competent for membrane binding

2018

The "inner membrane-associated protein of 30 kDa" (IM30), also known as "vesicle-inducing protein in plastids 1" (Vipp1), is found in the majority of photosynthetic organisms that use oxygen as an energy source, and its occurrence appears to be coupled to the existence of thylakoid membranes in cyanobacteria and chloroplasts. IM30 is most likely involved in thylakoid membrane biogenesis and/or maintenance, and has recently been shown to function as a membrane fusion protein in presence of Mg2+ However, the precise role of Mg2+ in this process and its impact on the structure and function of IM30 remains unknown. Here, we show that Mg2+ binds directly to IM30 with a binding affinity of ∼1 mm …

0301 basic medicineMembrane fusion proteinChemistryPspALipid bilayer fusionIsothermal titration calorimetryMg2+Cell BiologyBiochemistry[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry03 medical and health sciences030104 developmental biologyThylakoidMembrane biogenesisBiophysicsFourier transform IREnergy sourceMolecular BiologyMembrane biophysicsIM30BiogenesisJournal of Biological Chemistry
researchProduct

Multi-virion infectious units arise from free viral particles in an enveloped virus

2017

Many animal viruses are enveloped in a lipid bilayer uptaken from cellular membranes. Since viral surface proteins bind to these membranes to initiate infection, we hypothesized that free virions may also be capable of interacting with the envelopes of other virions extracellularly. Here, we demonstrate this hypothesis in the vesicular stomatitis virus (VSV), a prototypic negative-strand RNA virus composed by an internal ribonucleocapsid, a matrix protein, and an external envelope1. Using microscopy, dynamic light scattering, differential centrifugation, and flow cytometry, we show that free viral particles can spontaneously aggregate into multi-virion infectious units. We also show that, f…

0301 basic medicineMicrobiology (medical)viruses030106 microbiologyImmunologyVirus AttachmentCentrifugationPhosphatidylserinesPlasma protein bindingBiologyApplied Microbiology and BiotechnologyMicrobiologyArticle03 medical and health sciencesViral Envelope ProteinsViral envelopeGeneticsLipid bilayerDifferential centrifugationchemistry.chemical_classificationViral matrix proteinVirionRNA virusVesiculovirusCell BiologyFlow Cytometrybiology.organism_classificationVirologyDynamic Light Scattering3. Good healthMicroscopy Electron030104 developmental biologychemistryVesicular stomatitis virusGlycoproteinProtein BindingNature Microbiology
researchProduct

Diverse relations between ABC transporters and lipids: An overview.

2016

It was first discovered in 1992 that P-glycoprotein (Pgp, ABCB1), an ATP binding cassette (ABC) transporter, can transport phospholipids such as phosphatidylcholine, -ethanolamine and -serine as well as glucosylceramide and glycosphingolipids. Subsequently, many other ABC transporters were identified to act as lipid transporters. For substrate transport by ABC transporters, typically a classic, alternating access model with an ATP-dependent conformational switch between a high and a low affinity substrate binding site is evoked. Transport of small hydrophilic substrates can easily be imagined this way, as the molecule can in principle enter and exit the transporter in the same orientation. …

0301 basic medicineModels MolecularATP Binding Cassette Transporter Subfamily BBiophysicsGene ExpressionATP-binding cassette transporterPhosphatidylserinesBiologyBiochemistrySubstrate SpecificitySerine03 medical and health sciencesLipid translocationHumansProtein IsoformsBinding siteLipid bilayerLipid TransportATP-binding domain of ABC transportersBinding SitesPhosphatidylethanolaminesFatty AcidsTransporterBiological TransportCell BiologyCell biology030104 developmental biologyBiochemistryPhosphatidylcholineslipids (amino acids peptides and proteins)Protein BindingBiochimica et biophysica acta. Biomembranes
researchProduct

A Janus-Faced IM30 Ring Involved in Thylakoid Membrane Fusion Is Assembled from IM30 Tetramers.

2017

Summary Biogenesis and dynamics of thylakoid membranes likely involves membrane fusion events. Membrane attachment of the inner membrane-associated protein of 30 kDa (IM30) affects the structure of the lipid bilayer, finally resulting in membrane fusion. Yet, how IM30 triggers membrane fusion is largely unclear. IM30 monomers pre-assemble into stable tetrameric building blocks, which further align to form oligomeric ring structures, and differently sized IM30 rings bind to membranes. Based on a 3D reconstruction of IM30 rings, we locate the IM30 loop 2 region at the bottom of the ring and show intact membrane binding but missing fusogenic activity of loop 2 mutants. However, helix 7, which …

0301 basic medicineModels MolecularChemistryPeripheral membrane proteinLipid bilayer fusionBiological membraneMembrane FusionThylakoidsTransmembrane protein03 medical and health sciencesCrystallographyChloroplast Proteins030104 developmental biologyMembraneStructural BiologyMembrane biogenesisLiposomesBiophysicsProtein MultimerizationLipid bilayerMolecular BiologyIntegral membrane proteinProtein BindingStructure (London, England : 1993)
researchProduct

Incorporation of mRNA in Lamellar Lipid Matrices for Parenteral Administration

2018

Molecular pharmaceutics 15(2), 642 - 651 (2018). doi:10.1021/acs.molpharmaceut.7b01022

0301 basic medicineModels MolecularDrug CompoundingKineticsLipid BilayersPharmaceutical Science610TransfectionCell LineMyoblasts03 medical and health sciencesMiceX-Ray DiffractionCationsDrug DiscoveryScattering Small AngleAnimalsRNA Messengerddc:610Lipid bilayerLuciferasesMessenger RNALiposomeDrug CarriersChemistryAqueous two-phase systemRNATransfection030104 developmental biologyDelayed-Action PreparationsLiposomesBiophysicsMolecular Medicinelipids (amino acids peptides and proteins)Drug carrier
researchProduct

Recombinant anthrax protective antigen: Observation of aggregation phenomena by TEM reveals specific effects of sterols.

2017

Abstract Negatively stained transmission electron microscope images are presented that depict the aggregation of recombinant anthrax protective antigen (rPA83 monomer and the PA63 prepore oligomer) under varying in vitro biochemical conditions. Heat treatment (50 °C) of rPA83 produced clumped fibrils, but following heating the PA63 prepore formed disordered aggregates. Freeze-thaw treatment of the PA63 prepore generated linear flexuous aggregates of the heptameric oligomers. Aqueous suspensions of cholesterol microcrystals were shown to bind small rPA83 aggregates at the edges of the planar bilayers. With PA63 a more discrete binding of the prepores to the crystalline cholesterol bilayer ed…

0301 basic medicineModels MolecularHot TemperatureBacterial ToxinsGeneral Physics and AstronomyFibrilOligomerNegative Staining03 medical and health scienceschemistry.chemical_compoundProtein AggregatesMicroscopy Electron TransmissionStructural BiologyFreezingGeneral Materials ScienceAntigens BacterialAqueous solutionChemistryBilayerCell BiologyHydrogen-Ion ConcentrationNegative stainSterolRecombinant ProteinsCrystallographySterols030104 developmental biologyMonomerCholesterolTransmission electron microscopyCrystallizationDeoxycholic AcidMicron (Oxford, England : 1993)
researchProduct

Physical mechanisms of micro- and nanodomain formation in multicomponent lipid membranes.

2016

This article summarizes a variety of physical mechanisms proposed in the literature, which can generate micro- and nanodomains in multicomponent lipid bilayers and biomembranes. It mainly focusses on lipid-driven mechanisms that do not involve direct protein-protein interactions. Specifically, it considers (i) equilibrium mechanisms based on lipid-lipid phase separation such as critical cluster formation close to critical points, and multiple domain formation in curved geometries, (ii) equilibrium mechanisms that stabilize two-dimensional microemulsions, such as the effect of linactants and the effect of curvature-composition coupling in bilayers and monolayers, and (iii) non-equilibrium me…

0301 basic medicinePhase transitionCytoplasmCritical phenomenaLipid BilayersBiophysicsFOS: Physical sciencesCondensed Matter - Soft Condensed MatterMolecular Dynamics SimulationBiochemistryPhase TransitionQuantitative Biology::Subcellular Processes03 medical and health sciencesSurface-Active AgentsMembrane MicrodomainsMonolayerCluster (physics)AnimalsHumansMicroemulsionPhysics - Biological PhysicsLipid bilayerPhysics::Biological PhysicsBacteriaChemistryBiological membraneCell BiologyCrystallographyActin CytoskeletonKinetics030104 developmental biologyMembraneBiological Physics (physics.bio-ph)Chemical physicsSoft Condensed Matter (cond-mat.soft)ThermodynamicsEmulsionsSignal TransductionBiochimica et biophysica acta. Biomembranes
researchProduct

Intramolecular structural parameters are key modulators of the gel-liquid transition in coarse grained simulations of DPPC and DOPC lipid bilayers

2018

The capability of coarse-grained models based on the MARTINI mapping to reproduce the gel-liquid phase transition in saturated and unsaturated model lipids was investigated. We found that the model is able to reproduce a lower critical temperature for 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with respect to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Nonetheless, the appearance of a gel phase for DOPC is strictly dependent on the intramolecular parameters chosen to model its molecular structure. In particular, we show that the bending angle at the coarse-grained bead corresponding to the unsaturated carbon-carbon bond acts as an order parameter determining the temperature of …

0301 basic medicinePhase transitionMolecular dynamic12-DipalmitoylphosphatidylcholineLipid BilayersMolecular ConformationBiophysicsBendingMolecular Dynamics SimulationMolecular dynamics01 natural sciencesBiochemistry03 medical and health sciencesMolecular dynamicsPhase (matter)BiomembranesBiomembrane0103 physical sciencesMoleculeLipid bilayerMolecular BiologyMulti-scalePhase transitionMARTINI010304 chemical physicsChemistryTransition temperatureTemperatureCell BiologyCrystallography030104 developmental biologyChemical physicsIntramolecular forcePhosphatidylcholinesBiomembranes; MARTINI; Molecular dynamics; Multi-scale; Phase transition; Biophysics; Biochemistry; Molecular Biology; Cell Biology
researchProduct

Direct Visualization of the Conformational Dynamics of Single Influenza Hemagglutinin Trimers

2018

Influenza hemagglutinin (HA) is the canonical type I viral envelope glycoprotein and provides a template for the membrane-fusion mechanisms of numerous viruses. The current model of HA-mediated membrane fusion describes a static "spring-loaded" fusion domain (HA2) at neutral pH. Acidic pH triggers a singular irreversible conformational rearrangement in HA2 that fuses viral and cellular membranes. Here, using single-molecule Förster resonance energy transfer (smFRET)-imaging, we directly visualized pH-triggered conformational changes of HA trimers on the viral surface. Our analyses reveal reversible exchange between the pre-fusion and two intermediate conformations of HA2. Acidification of p…

0301 basic medicineProtein ConformationHemagglutinin (influenza)Hemagglutinin Glycoproteins Influenza VirusBiologyArticleGeneral Biochemistry Genetics and Molecular BiologyReaction coordinate03 medical and health sciencesViral envelopeInfluenza HumanFluorescence Resonance Energy TransferHumansDynamic equilibriumFusionCell MembraneLipid bilayer fusionHydrogen-Ion ConcentrationVirus InternalizationSingle Molecule ImagingHEK293 CellsHemagglutinins030104 developmental biologyMembraneFörster resonance energy transferA549 CellsInfluenza A virusBiophysicsbiology.proteinProtein BindingCell
researchProduct