Search results for "biocatalysis"

showing 10 items of 57 documents

Heavy enzymes and the rational redesign of protein catalysts

2019

Abstract An unsolved mystery in biology concerns the link between enzyme catalysis and protein motions. Comparison between isotopically labelled “heavy” dihydrofolate reductases and their natural‐abundance counterparts has suggested that the coupling of protein motions to the chemistry of the catalysed reaction is minimised in the case of hydride transfer. In alcohol dehydrogenases, unnatural, bulky substrates that induce additional electrostatic rearrangements of the active site enhance coupled motions. This finding could provide a new route to engineering enzymes with altered substrate specificity, because amino acid residues responsible for dynamic coupling with a given substrate present…

010402 general chemistryProtein Engineering01 natural sciencesBiochemistryCatalysisEnzyme catalysisisotope effectsCatalytic DomainDihydrofolate reductaseMolecular BiologyAlcohol dehydrogenasechemistry.chemical_classificationalcohol dehydrogenasesCarbon Isotopesdihydrofolate reductasesbiologyBacteriaNitrogen Isotopes010405 organic chemistryConceptOrganic ChemistryAlcohol DehydrogenaseActive siteSubstrate (chemistry)Protein engineeringDeuteriumCombinatorial chemistrymolecular dynamics0104 chemical sciencesKineticsTetrahydrofolate Dehydrogenaseenzyme engineeringEnzymechemistrybiology.proteinBiocatalysisMolecular MedicineConcepts
researchProduct

Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor

2015

Commercial lipases, from porcine pancreas (PPL),Candida rugosa(CRL), andThermomyces lanuginosus(Lipozyme TL IM), were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO) for the liberation of free linoleic acid (LA), used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%), its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%). On the basis of the experimental findings, C…

0106 biological sciencesArticle SubjectLinoleic acidlcsh:TX341-64101 natural sciencesHydrolysischemistry.chemical_compound010608 biotechnology[SDV.IDA]Life Sciences [q-bio]/Food engineeringFlavorchemistry.chemical_classificationChromatographylcsh:TP368-456010405 organic chemistryChemistrySubstrate (chemistry)0104 chemical sciencesCandida rugosalcsh:Food processing and manufactureEnzymeBiochemistryBiocatalysisLiberationlcsh:Nutrition. Foods and food supply[SDV.AEN]Life Sciences [q-bio]/Food and NutritionResearch ArticleFood ScienceInternational Journal of Food Science
researchProduct

Highly effective, regiospecific reduction of chalcone by cyanobacteria leads to the formation of dihydrochalcone: two steps towards natural sweetness

2017

Abstract Background Chalcones are the biogenetic precursors of all known flavonoids, which play an essential role in various metabolic processes in photosynthesizing organisms. The use of whole cyanobacteria cells in a two-step, light-catalysed regioselective bio-reduction of chalcone, leading to the formation of the corresponding dihydrochalcone, is reported. The prokaryotic microalgae cyanobacteria are known to produce phenolic compounds, including flavonoids, as natural components of cells. It seems logical that organisms producing such compounds possess a suitable “enzymatic apparatus” to carry out their biotransformation. Therefore, determination of the ability of whole cells of select…

0301 basic medicineCyanobacteriaChalconeLightBioconversionlcsh:QR1-502PhotobioreactorBioengineeringBiologyAphanizomenonCyanobacteria01 natural sciencesApplied Microbiology and BiotechnologyCatalysisGas Chromatography-Mass Spectrometrylcsh:Microbiology03 medical and health scienceschemistry.chemical_compoundChalconesChalconeBiotransformationRegioselective bio-reductionOrganic chemistryBiotransformation010405 organic chemistryResearchDihydrochalconeStereoisomerismbiology.organism_classificationDihydrochalcone0104 chemical sciences030104 developmental biologychemistryBiochemistryBiocatalysisSweetening AgentsBiocatalysisOxidation-ReductionBiotechnologyMicrobial Cell Factories
researchProduct

Biocatalytic hydrogenation of the C=C bond in the enone unit of hydroxylated chalcones-process arising from cyanobacterial adaptations.

2018

To verify the hypothesis that cyanobacteria naturally biosynthesising polyphenolic compounds possess an active enzymatic system that enables them to transform these substances, such an ability of the biocatalytic systems of whole cells of these biota was assessed for the first time. One halophilic strain and seven freshwater strains of cyanobacteria representing four of the five taxonomic orders of Cyanophyta were examined to determine the following: (i) whether they contain polyphenols, including flavonoids; (ii) the resistance of their cultures when suppressed by the presence of exogenous hydroxychalcones—precursors of flavonoid biosynthesis and (iii) whether these photoautotrophs can tra…

0301 basic medicineCyanobacteriaStereochemistryHydroxylated chalconesCyanobacteria01 natural sciencesApplied Microbiology and BiotechnologyHydroxylation03 medical and health scienceschemistry.chemical_compoundChalconesbiology010405 organic chemistryfood and beveragesGeneral MedicineCarbon-13 NMRbiology.organism_classification0104 chemical sciencesRegiospecific hydrogenation030104 developmental biologyFlavonoid biosynthesisApplied Microbial and Cell PhysiologychemistryPolyphenolBiocatalysisProton NMRBiocatalysisHydrogenationEnoneBiotechnologyApplied microbiology and biotechnology
researchProduct

Prefolded Synthetic G-Quartets Display Enhanced Bioinspired Properties

2016

International audience; A water-soluble template-assembled synthetic G-quartet (TASQ) based on the use of a macrocyclodecapeptide scaffold was designed to display stable intramolecular folds alone in solution. The preformation of the guanine quartet, demonstrated by NMR and CD investigations, results in enhanced peroxidase-type biocatalytic activities and improved quadruplex-interacting properties. Comparison of its DNAzyme-boosting properties with the ones of previously published TASQ revealed that, nowadays, it is the best DNAzyme-boosting agent.

0301 basic medicineModels MolecularGuanineStereochemistryDNAzymewaterSupramolecular chemistryDeoxyribozymednainsights010402 general chemistryG-QuartetsG-quadruplexchemistry[ CHIM ] Chemical Sciences01 natural sciencesCatalysissupramolecular chemistryg-quadruplex structures03 medical and health scienceschemistry.chemical_compoundG-quartets[CHIM]Chemical SciencesrnaComputingMilieux_MISCELLANEOUSligandsbiologyOrganic Chemistry[CHIM.CATA]Chemical Sciences/CatalysisGeneral ChemistryDNA CatalyticSmall moleculeG-quadruplexes0104 chemical sciencesSolutionssmall molecules030104 developmental biologychemistryBiocatalysisIntramolecular forceBiocatalysisNucleic Acid Conformationcyclodecapeptideacid
researchProduct

DICER- and MMSET-catalyzed H4K20me2 recruits the nucleotide excision repair factor XPA to DNA damage sites

2017

The endoribonuclease DICER facilitates chromatin decondensation during lesion recognition following UV exposure. Chitale and Richly show that DICER mediates the recruitment of the methyltransferase MMSET, which catalyzes the dimethylation of histone H4 at lysine 20 and facilitates the recruitment of the nucleotide excision repair factor XPA.

0301 basic medicineRibonuclease IIIDNA RepairDNA damageDNA repairUltraviolet Raysgenetic processes27Article24DEAD-box RNA HelicasesHistones03 medical and health sciencesCell Line TumorHumansResearch ArticlesbiologyLysinefungiEndoribonuclease Dicerfood and beverages37Cell BiologyDNA Repair PathwayHistone-Lysine N-MethyltransferaseCell biologyChromatinXeroderma Pigmentosum Group A ProteinRepressor Proteinsenzymes and coenzymes (carbohydrates)030104 developmental biologyHistoneHEK293 Cellsbiology.proteinBiocatalysisDicerNucleotide excision repairDNA DamageThe Journal of Cell Biology
researchProduct

A Green Look at the Aldol Reaction

2005

Aldol reactions have been and are widely applied for the preparation of β-hydroxy aldehydes, β-hydroxy ketones or α,β-unsaturated aldehydes or ketones through addition or addition-elimination reactions of aldehydes and ketones. The study of the aldol reaction from the point of view of its greenness must have in mind first of all that a general synthetic method must be based on complete and efficient conversions of well defined selectivity and that greenness is more a term for comparison than an absolute kind of qualification. This comparison, when referred to the aldol reaction, applies here to the diverse modifications of the reaction. Thus, the original poorly selective, but highly atom e…

Allylic rearrangementGeneral MedicineCondensation reactionHeterogeneous catalysisPollutionSupercritical fluidCatalysischemistry.chemical_compoundchemistryAldol reactionBiocatalysisIonic liquidEnvironmental ChemistryOrganic chemistrySelectivityChemInform
researchProduct

A simple model for barrier frequencies for enzymatic reactions.

2010

We present a simple model to rationalize the effects of environment on the reaction barrier frequencies derived from free energy profiles. These frequencies are relevant in deviations of a rate constant from its transition state theory value and in determining which environmental dynamics participate in the reaction. In particular, this simple model can be used to understand the changes in the reaction barrier frequencies of an enzymatic catalyzed reaction and the corresponding uncatalyzed process in aqueous solution, a change which has implications for dynamical environmental effects on the enzymatic reaction. Two possible cases are analyzed, in which the polarity (charge separation/locali…

Aqueous solutionMolecular StructureChemistryPolarity (physics)ThermodynamicsInverseAtomic and Molecular Physics and OpticsTransition stateEnzyme catalysisCatalysisEnzymesTransition state theoryReaction rate constantModels ChemicalBiocatalysisPhysical chemistryThermodynamicsPhysical and Theoretical ChemistryNuclear ExperimentChemphyschem : a European journal of chemical physics and physical chemistry
researchProduct

Biocatalysis and biorecognition in nonaqueous media. Some perspectives in analytical biochemistry

1995

Biocatalysis and, to a lesser extent, biorecognition in non-aqueous media (including organic solvents as well as supercritical fluids and gases) constitute at present an exciting research area which has already demonstrated its biotechnological potential in numerous, varied applications. Less attention, however, has been paid to its analytical possibilities, even though many advantages have been postulated and a wide range of poorly water-soluble analytes are present in samples (or waste materials) from food and drink, petrochemical, pharmaceutical, military and other industries. The main approaches, developed in recent years to exploit the use of enzymes, antibodies or antibody mimics in w…

BiocatalysisChemistryOrganic solventOrganic chemistryBiochemical engineeringAnalytical BiochemistryAnalytical ChemistryMikrochimica Acta
researchProduct

Insights on the origin of catalysis on glycine N-methyltransferase from computational modeling.

2018

The origin of enzyme catalysis remains a question of debate despite much intense study. We report a QM/MM theoretical study of the SN2 methyl transfer reaction catalyzed by a glycine N-methyltransferase (GNMT) and three mutants to test whether recent experimental observations of rate-constant reductions and variations in inverse secondary α-3H kinetic isotope effects (KIEs) should be attributed to changes in the methyl donor−acceptor distance (DAD): is catalysis due to a compression effect? Semiempirical (AM1) and DFT (M06-2X) methods were used to describe the QM subset of atoms, while OPLS-AA and TIP3P classical force fields were used for the protein and water molecules, respectively. The …

Chemistry(all)Static ElectricityMolecular ConformationGlycine N-Methyltransferase010402 general chemistry01 natural sciencesenzyme catalysisQM/MMBiochemistryArticleCatalysisEnzyme catalysisCatalysisColloid and Surface ChemistryComputational chemistryKinetic isotope effectMolecule/dk/atira/pure/subjectarea/asjc/1600/dk/atira/pure/subjectarea/asjc/1300/1303/dk/atira/pure/subjectarea/asjc/1500/1505biology010405 organic chemistryChemistryActive siteGeneral ChemistryGlycine N-methyltransferase0104 chemical sciencesKineticsGNMTBiocatalysisbiology.proteinQuantum TheorySN2 reaction/dk/atira/pure/subjectarea/asjc/1500/1503
researchProduct