Search results for "biocatalysis"
showing 10 items of 57 documents
Heavy enzymes and the rational redesign of protein catalysts
2019
Abstract An unsolved mystery in biology concerns the link between enzyme catalysis and protein motions. Comparison between isotopically labelled “heavy” dihydrofolate reductases and their natural‐abundance counterparts has suggested that the coupling of protein motions to the chemistry of the catalysed reaction is minimised in the case of hydride transfer. In alcohol dehydrogenases, unnatural, bulky substrates that induce additional electrostatic rearrangements of the active site enhance coupled motions. This finding could provide a new route to engineering enzymes with altered substrate specificity, because amino acid residues responsible for dynamic coupling with a given substrate present…
Optimization of the Hydrolysis of Safflower Oil for the Production of Linoleic Acid, Used as Flavor Precursor
2015
Commercial lipases, from porcine pancreas (PPL),Candida rugosa(CRL), andThermomyces lanuginosus(Lipozyme TL IM), were investigated in terms of their efficiency for the hydrolysis of safflower oil (SO) for the liberation of free linoleic acid (LA), used as a flavor precursor. Although PPL, under the optimized conditions, showed a high degree of hydrolysis (91.6%), its low tolerance towards higher substrate concentrations could limit its use for SO hydrolysis. In comparison to the other investigated lipases, Lipozyme TL IM required higher amount of enzyme and an additional 3 h of reaction time to achieve its maximum degree of SO hydrolysis (90.2%). On the basis of the experimental findings, C…
Highly effective, regiospecific reduction of chalcone by cyanobacteria leads to the formation of dihydrochalcone: two steps towards natural sweetness
2017
Abstract Background Chalcones are the biogenetic precursors of all known flavonoids, which play an essential role in various metabolic processes in photosynthesizing organisms. The use of whole cyanobacteria cells in a two-step, light-catalysed regioselective bio-reduction of chalcone, leading to the formation of the corresponding dihydrochalcone, is reported. The prokaryotic microalgae cyanobacteria are known to produce phenolic compounds, including flavonoids, as natural components of cells. It seems logical that organisms producing such compounds possess a suitable “enzymatic apparatus” to carry out their biotransformation. Therefore, determination of the ability of whole cells of select…
Biocatalytic hydrogenation of the C=C bond in the enone unit of hydroxylated chalcones-process arising from cyanobacterial adaptations.
2018
To verify the hypothesis that cyanobacteria naturally biosynthesising polyphenolic compounds possess an active enzymatic system that enables them to transform these substances, such an ability of the biocatalytic systems of whole cells of these biota was assessed for the first time. One halophilic strain and seven freshwater strains of cyanobacteria representing four of the five taxonomic orders of Cyanophyta were examined to determine the following: (i) whether they contain polyphenols, including flavonoids; (ii) the resistance of their cultures when suppressed by the presence of exogenous hydroxychalcones—precursors of flavonoid biosynthesis and (iii) whether these photoautotrophs can tra…
Prefolded Synthetic G-Quartets Display Enhanced Bioinspired Properties
2016
International audience; A water-soluble template-assembled synthetic G-quartet (TASQ) based on the use of a macrocyclodecapeptide scaffold was designed to display stable intramolecular folds alone in solution. The preformation of the guanine quartet, demonstrated by NMR and CD investigations, results in enhanced peroxidase-type biocatalytic activities and improved quadruplex-interacting properties. Comparison of its DNAzyme-boosting properties with the ones of previously published TASQ revealed that, nowadays, it is the best DNAzyme-boosting agent.
DICER- and MMSET-catalyzed H4K20me2 recruits the nucleotide excision repair factor XPA to DNA damage sites
2017
The endoribonuclease DICER facilitates chromatin decondensation during lesion recognition following UV exposure. Chitale and Richly show that DICER mediates the recruitment of the methyltransferase MMSET, which catalyzes the dimethylation of histone H4 at lysine 20 and facilitates the recruitment of the nucleotide excision repair factor XPA.
A Green Look at the Aldol Reaction
2005
Aldol reactions have been and are widely applied for the preparation of β-hydroxy aldehydes, β-hydroxy ketones or α,β-unsaturated aldehydes or ketones through addition or addition-elimination reactions of aldehydes and ketones. The study of the aldol reaction from the point of view of its greenness must have in mind first of all that a general synthetic method must be based on complete and efficient conversions of well defined selectivity and that greenness is more a term for comparison than an absolute kind of qualification. This comparison, when referred to the aldol reaction, applies here to the diverse modifications of the reaction. Thus, the original poorly selective, but highly atom e…
A simple model for barrier frequencies for enzymatic reactions.
2010
We present a simple model to rationalize the effects of environment on the reaction barrier frequencies derived from free energy profiles. These frequencies are relevant in deviations of a rate constant from its transition state theory value and in determining which environmental dynamics participate in the reaction. In particular, this simple model can be used to understand the changes in the reaction barrier frequencies of an enzymatic catalyzed reaction and the corresponding uncatalyzed process in aqueous solution, a change which has implications for dynamical environmental effects on the enzymatic reaction. Two possible cases are analyzed, in which the polarity (charge separation/locali…
Biocatalysis and biorecognition in nonaqueous media. Some perspectives in analytical biochemistry
1995
Biocatalysis and, to a lesser extent, biorecognition in non-aqueous media (including organic solvents as well as supercritical fluids and gases) constitute at present an exciting research area which has already demonstrated its biotechnological potential in numerous, varied applications. Less attention, however, has been paid to its analytical possibilities, even though many advantages have been postulated and a wide range of poorly water-soluble analytes are present in samples (or waste materials) from food and drink, petrochemical, pharmaceutical, military and other industries. The main approaches, developed in recent years to exploit the use of enzymes, antibodies or antibody mimics in w…
Insights on the origin of catalysis on glycine N-methyltransferase from computational modeling.
2018
The origin of enzyme catalysis remains a question of debate despite much intense study. We report a QM/MM theoretical study of the SN2 methyl transfer reaction catalyzed by a glycine N-methyltransferase (GNMT) and three mutants to test whether recent experimental observations of rate-constant reductions and variations in inverse secondary α-3H kinetic isotope effects (KIEs) should be attributed to changes in the methyl donor−acceptor distance (DAD): is catalysis due to a compression effect? Semiempirical (AM1) and DFT (M06-2X) methods were used to describe the QM subset of atoms, while OPLS-AA and TIP3P classical force fields were used for the protein and water molecules, respectively. The …