Search results for "bolometer"

showing 10 items of 24 documents

Quantitative thermoelastic stress analysis by means of low-cost setups

2020

Abstract A low-cost Thermoelastic Stress Analysis (TSA) experimental setup is proposed which uses an ordinary micro-bolometer and in-house developed signal processing scripts. The setup is evaluated by analysing the thermoelastic signal from a tensile and a SENT specimen made of stainless steel AISI 304L, and the bolometer performances are compared with those of a state of the art photon detector. Signal processing is based on off-line cross-correlation, using a self-reference signal which is retrieved from the acquired thermal data. Procedures are in particular developed to recognise, quantify and correct errors due to spectral leakage and loss of streamed frames. The thermoelastic signal …

Signal processingMaterials scienceMicro-bolometersAcoustics/dk/atira/pure/subjectarea/asjc/2500/2504/dk/atira/pure/subjectarea/asjc/2200/2208Crack-growth monitoringThermoelastic stress analysis02 engineering and technologyFatigue testing01 natural sciencesSignallaw.invention010309 opticsSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineThermoelastic dampingData acquisitionlaw0103 physical sciencesCalibrationElectrical and Electronic EngineeringSpectral leakageStress intensity factorSignal processing/dk/atira/pure/subjectarea/asjc/3100/3107Mechanical EngineeringBolometer021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsIR-thermography/dk/atira/pure/subjectarea/asjc/2200/22100210 nano-technology
researchProduct

Fabrication of Electrical Contacts on Pyramid-Shaped NTD-Ge Microcalorimeters Using Free-Standing Shadow Masks

2011

In our effort to fabricate arrays of germanium microcalorimeters for X-ray detection, a truncated square-based pyramid shape has been identified as a suitable geometry for the sensors. It allows to obtain a uniform current spreading across each sensor, and represents a good compromise between having a large support area for the radiation absorber and for maintaining an overall small bolometer volume. This three-dimensional geometry, however, does not allow to create the electrical contacts for the sensors using a regular photoresist-based lift-off metallization process. In this paper we show how to deposit metal contacts on the lateral faces of the pyramidal sensors by metal evaporation thr…

Shadow maskX-ray detectorShadow evaporationFabricationMaterials scienceMicrocalorimeter arrayNTD-GeX-ray detectorchemistry.chemical_elementGermaniumPhotoresistSettore ING-INF/01 - Elettronicalaw.inventionOpticslawGeneral Materials SciencePyramid (geometry)Free-standing maskbusiness.industryBolometerCondensed Matter PhysicsAtomic and Molecular Physics and OpticsElectrical contactschemistryX-ray spectroscopybusiness
researchProduct

Radiation-induced defects in antiferroelectric thin films

2003

Abstract Radiation effects on highly oriented antiferroelectric (AFE) PbZrO3 (PZ) films with a thickness of approximately 400 nm are investigated in view of their possible application as a temperature sensitive element in a new bolometer system for fusion devices like ITER. The films were prepared by pulsed laser deposition (PLD). The dielectric constant was measured in the frequency range from 1 to 250 kHz in a stepwise cooling mode (∼2 °C min−1) from 400 °C to room temperature before and after irradiation to a fast neutron fluence of 2×1022 m−2 (E>0.1 MeV). After irradiation, the films were annealed in several steps up to ∼400 °C to remove the radiation-induced defects. The results are di…

Materials sciencebusiness.industryMechanical EngineeringBolometerDielectricRadiationRadiation effectPulsed laser depositionlaw.inventionNuclear magnetic resonanceNuclear Energy and EngineeringlawOptoelectronicsGeneral Materials ScienceIrradiationThin filmbusinessDeposition (law)Civil and Structural EngineeringFusion Engineering and Design
researchProduct

Development of a TES based Cryo-Anticoincidence for a large array of microcalorimeters

2009

The employment of large arrays of microcalorimeters in space missions (IXO, EDGE/XENIA)[1][2][3], requires the presence of an anticoincidence detector to remove the background due to the particles, with a rejection efficiency at least equal to Suzaku (98%) [1]. A new concept of anticoincidence is under development to match the very tight thermal requirements and to simplify the design of the electronic chain. The idea is to produce a Cryo-AntiCoincidence (Cryo-AC) based on a silicon absorber and read by a TES (Transition-Edge Sensor). This configuration would ensure very good performances in terms of efficiency, time response and signal to noise ratio. We present the results of estimations,…

Physicsbusiness.industryLarge arrayBolometerDetectorParticle detectorSpace explorationlaw.inventionPhysics and Astronomy (all)OpticsSignal-to-noise ratioMicrocalorimeterlawThermalDevelopment (differential geometry)Particle detectorX-ray detectors microcalorimeters backgroundAnticoincidencebusinessAnticoincidence; Microcalorimeter; Particle detector; TES; X ray detector; Physics and Astronomy (all)TESX ray detectorAIP Conference Proceedings
researchProduct

Four-Color Infrared Bolometer System for One-Meter Telescope

1978

As a part of the collaborative program between the University of Palermo and the Center for Astrophysics (HCO/SAO) a far infrared photometer has been designed, fabricated and tested by the Univsity of Palermo to be used as a focal plane instrument on the Center of Astrophysics/University of Arizona balloon-borne 102 cm telescope (Fazio et a1. 1974).

PhysicsInfraredbusiness.industryBolometerPhotometerElectronic equipmentlaw.inventionOptical reflectionTelescopeOpticsFar infraredlawMetrebusiness
researchProduct

NEUTRON IRRADIATION EFFECTS IN PZ and PZT THIN FILMS

2005

ABSTRACT Neutron irradiation effects on highly oriented antiferroelectric PbZrO3 (PZ) and ferroelectric PbZr0.53Ti0.47O3 (PZT) thin films are investigated in view of their possible application as a temperature sensitive element in a new bolometer system for fusion devices like ITER. All investigated thin films were prepared by a sol-gel technique and by pulsed laser deposition (PLD) respectively. The dielectric properties were investigated in a frequency range from 1 to 250 kHz and at temperatures up to 400°C, prior to and after irradiation to a neutron fluence of 3 * 1022 m−2 (E > 0.1 MeV). After irradiation, the films were anneald in several steps up to 400°C in order to remove the radiat…

Materials sciencebusiness.industryBolometerHeterojunctionDielectricCondensed Matter PhysicsFerroelectricityElectronic Optical and Magnetic Materialslaw.inventionPulsed laser depositionControl and Systems EngineeringlawNeutron fluxMaterials ChemistryCeramics and CompositesOptoelectronicsIrradiationElectrical and Electronic EngineeringThin filmbusinessIntegrated Ferroelectrics
researchProduct

Hypersensitive tunable Josephson escape sensor for gigahertz astronomy

2020

Sensitive photon detection in the gigahertz band constitutes the cornerstone to study different phenomena in astronomy, such as radio burst sources, galaxy formation, cosmic microwave background, axions, comets, gigahertz-peaked spectrum radio sources and supermassive black holes. Nowadays, state of the art detectors for astrophysics are mainly based on transition edge sensors and kinetic inductance detectors. Overall, most sensible nanobolometers so far are superconducting detectors showing a noise equivalent power (NEP) as low as 2x10-20 W/Hz1/2. Yet, fast thermometry at the nanoscale was demonstrated as well with Josephson junctions through switching current measurements. In general, det…

PhotonastrofysiikkaDark matterCosmic microwave backgroundtutkimuslaitteetGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyQuantum key distribution01 natural sciences7. Clean energySettore FIS/03 - Fisica della MateriasuprajohteetGhz sensorsNuclear physicsSuperconductivity (cond-mat.supr-con)bolometer0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Galaxy formation and evolutioncalorimeter010306 general physicsQuantum computerPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - Superconductivity021001 nanoscience & nanotechnologyQuantum technologyModulationilmaisimet0210 nano-technology
researchProduct

Probing the radio emission from air showers with polarization measurements

2014

The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed which cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially wit…

SignalsAstronomy01 natural sciencesElectric fieldComputational physicsCosmic-raysComposition energy spectra and interactionscosmic rayRadio wavePhysicsEarth's magnetic fieldHigh Energy Astrophysical Phenomena (astro-ph.HE)Radiation[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsAstrophysics::Instrumentation and Methods for AstrophysicsPolarization (waves)Polarization (waves)BolometersThunderstormsMagnetic fieldComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaCAMPO MAGNÉTICOradio emissionRadio waveNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerComposition energy spectra and interactions; Solar electromagnetic emission; BolometersAstrophysics::High Energy Astrophysical Phenomenainfrared submillimeter wave microwave and radiowave receivers and detectorsFieldFOS: Physical sciencesPierre Auger Observatory ; air shower ; radio emissionRadiationMonte-carlo SimulationsOpticsElectric field0103 physical sciencesddc:530Pierre auger observatory010306 general physicsPulsesInstrumentation and Methods for Astrophysics (astro-ph.IM)Pierre Auger Observatory010308 nuclear & particles physicsbusiness.industrySolar electromagnetic emissionFísicaOpticsDetectorComputational physics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerEarth's magnetic fieldMagnetic fieldExperimental High Energy PhysicsbusinessCodalema
researchProduct

Dielectric properties of reactor irradiated ferroelectric thin films

2001

Abstract Radiation effects in highly oriented Pb1Zr0.53Ti0.47O3 (PZT), Pb0.94La0.06Zr0.65Ti0.35O3 (PLZT-6), and PbiZriO3 (PZ) ferroelectric (FE) and antiferroelectric (AF) thin films are investigated in view of their possible application as a temperature sensitive element in a new bolometer system for ITER (International Thermonuclear Experimental Reactor). The dielectric properties (i.e. hysteresis loops, dielectric constants) of the films were investigated in a frequency range from 20 to 105 Hz and at temperatures up to 450 °C, before and after neutron irradiation to a neutron fluence of 5×1021 m−2 (E<0.1 MeV). The dielectric constant was measured during cooling with 1.7 °Cmin−1. The diel…

Materials scienceAnnealing (metallurgy)BolometerAnalytical chemistryDielectricCondensed Matter PhysicsFerroelectricityElectronic Optical and Magnetic Materialslaw.inventionNuclear magnetic resonanceControl and Systems EngineeringlawNeutron fluxMaterials ChemistryCeramics and CompositesAntiferroelectricityIrradiationElectrical and Electronic EngineeringThin filmIntegrated Ferroelectrics
researchProduct

Microwave nanobolometer based on proximity Josephson junctions

2014

We introduce a microwave bolometer aimed at high-quantum-efficiency detection of wave packet energy within the framework of circuit quantum electrodynamics, the ultimate goal being single microwave photon detection. We measure the differential thermal conductance between the detector and its heat bath, obtaining values as low as $5\phantom{\rule{4.pt}{0ex}}\text{fW}/\mathrm{K}$ at $50\phantom{\rule{4.pt}{0ex}}\text{mK}$. This is one tenth of the thermal conductance quantum and corresponds to a theoretical lower bound on noise-equivalent power of order ${10}^{\ensuremath{-}20}\phantom{\rule{4.pt}{0ex}}\text{W}/\sqrt{\text{Hz}}$ at $50\phantom{\rule{4.pt}{0ex}}\text{mK}$. By measuring the dif…

PhysicsJosephson effectta214Condensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsta114Bolometerta221FOS: Physical sciencesOrder (ring theory)Condensed Matter PhysicsCoupling (probability)Thermal conductance quantumElectronic Optical and Magnetic Materialslaw.inventionPi Josephson junctionCircuit quantum electrodynamicsbolometerlawMesoscale and Nanoscale Physics (cond-mat.mes-hall)Energy (signal processing)ta218proximity Josephson junctionPhysical Review B
researchProduct