Search results for "cell behavior"

showing 10 items of 91 documents

Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts.

2010

Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro.In different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14-positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real-time polymerase chain reaction analysis, viabili…

MESH: Bone ResorptionMESH: RabbitsGallium[SDV.BC.IC] Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB]MESH: Base Sequence[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMiceMESH: Alkaline PhosphataseMESH: Reverse Transcriptase Polymerase Chain Reaction[SDV.BC.IC]Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB]MESH: Animals[SDV.BBM.BC] Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Cells Cultured[SDV.MHEP.RSOA] Life Sciences [q-bio]/Human health and pathology/Rhumatology and musculoskeletal systemReverse Transcriptase Polymerase Chain ReactionCell DifferentiationMESH: GalliumResearch Papers[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM]Isoenzymes[SDV.MHEP.RSOA]Life Sciences [q-bio]/Human health and pathology/Rhumatology and musculoskeletal systemMESH: Isoenzymes[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]RabbitsMESH: Cells Culturedmusculoskeletal diseasesMESH: Cell DifferentiationMESH: DNA PrimersAcid Phosphatase[SDV.CAN]Life Sciences [q-bio]/CancerIn Vitro TechniquesMESH: Acid Phosphatase[SDV.CAN] Life Sciences [q-bio]/Cancer[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]AnimalsHumansBone Resorption[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]MESH: Tartrate-Resistant Acid Phosphatase[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/BiomaterialsMESH: MiceDNA PrimersMESH: In Vitro TechniquesMESH: OsteoblastsOsteoblastsMESH: HumansBase SequenceTartrate-Resistant Acid Phosphatase[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyAlkaline Phosphatase[SDV.IB.BIO] Life Sciences [q-bio]/Bioengineering/Biomaterials
researchProduct

Biallelic mutations in neurofascin cause neurodevelopmental impairment and peripheral demyelination

2019

See Karakaya and Wirth (doi:10.1093/brain/awz273) for a scientific commentary on this article. Neurofascin (NFASC) isoforms are immunoglobulin cell adhesion molecules involved in node of Ranvier assembly. Efthymiou et al. identify biallelic NFASC variants in ten unrelated patients with a neurodevelopmental disorder characterized by variable degrees of central and peripheral involvement. Abnormal expression of Nfasc155 is accompanied by severe loss of myelinated fibres.

Male[SDV]Life Sciences [q-bio][SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyNerve Fibers MyelinatedGene FrequencyNeurodevelopmental Disorder[SDV.BC.IC]Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB]Nerve Growth FactorProtein IsoformsChildComputingMilieux_MISCELLANEOUSMyelin Sheathneurofascin; neurodevelopment; peripheral demyelinationAlleleneurodevelopmentDemyelinating DiseaseGenomicsneurodevelopment neurofascin peripheral demyelinationSettore MED/39 - Neuropsichiatria InfantilePedigree[SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyChild PreschoolPeripheral Nerve[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Femaleneurodevelopment; neurofascin; peripheral demyelinationNeurogliaHumanAdultAdolescentNervous System MalformationsGuillain-Barre SyndromeAxonNervous System MalformationneurofascinRanvier's NodesHumansNerve Growth FactorsPeripheral NervesAllelesAutoantibodiesperipheral demyelinationInfantProtein IsoformOriginal ArticlesAxonsnervous systemNeurodevelopmental DisordersCell Adhesion MoleculeMutationCell Adhesion MoleculesDemyelinating Diseases
researchProduct

Algorithms for {K, s+1}-potent matrix constructions

2013

In this paper, we deal with {K, s + 1}-potent matrices. These matrices generalize all the following classes of matrices: k-potent matrices, periodic matrices, idempotent matrices, involutory matrices, centrosymmetric matrices, mirrorsymmetric matrices, circulant matrices, among others. Several applications of these classes of matrices can be found in the literature. We develop algorithms in order to compute {K, s + 1}-potent matrices and {K, s + 1}-potent linear combinations of {K, s + 1}-potent matrices. In addition, some examples are presented in order to show the numerical performance of the method. (C) 2012 Elsevier B.V. All rights reserved.

Matemàtica aplicadaQuantitative Biology::BiomoleculesLinear combinationsQuantitative Biology::Populations and EvolutionEigenvaluesPotent matricesINGENIERIA TELEMATICAMATEMATICA APLICADAMatrius (Matemàtica)Involutory matricesQuantitative Biology::Cell Behavior
researchProduct

Upconversion Nanoparticles for Bioimaging and Regenerative Medicine.

2016

Nanomaterials are proving useful for regenerative medicine in combination with stem cell therapy. Nanoparticles can be administrated and targeted to desired tissues or organs and subsequently, be used in non-invasive real-time visualization and tracking of cells by means of different imaging techniques, they can act as therapeutic agent nanocarriers, and can also serve as scaffolds to guide the growth of new tissue. Nanoparticles can be of different chemical nature, such as gold, iron oxide, cadmium selenide, and carbon, and have the potential to be used in regenerative medicine. However, there are still many issues to be solved, such as toxicity, stability, and resident time. Upconversion …

Materials scienceHistologyMini ReviewBiomedical EngineeringNanoparticleNanotechnologyBioengineering02 engineering and technology010402 general chemistry01 natural sciencesRegenerative medicineNanomaterialschemistry.chemical_compoundUpconversion nanoparticlestransparencyCadmium selenideLow toxicityNIR excitationnon-toxic nanoparticlescell behavior regulationfungifood and beveragesBioengineering and Biotechnology021001 nanoscience & nanotechnologymulti-wavelength/multimodal bioimagingPhoton upconversion0104 chemical scienceschemistryupconverted (UV–VIS–NIR) emissionNanocarriers0210 nano-technologyBiotechnologyFrontiers in bioengineering and biotechnology
researchProduct

Numerical Simulation of a Contractivity Based Multiscale Cancer Invasion Model

2017

We present a problem-suited numerical method for a particularly challenging cancer invasion model. This model is a multiscale haptotaxis advection-reaction-diffusion system that describes the macroscopic dynamics of two types of cancer cells coupled with microscopic dynamics of the cells adhesion on the extracellular matrix. The difficulties to overcome arise from the non-constant advection and diffusion coefficients, a time delay term, as well as stiff reaction terms.

Mathematical optimizationComputer simulationQuantitative Biology::Tissues and OrgansNumerical analysisDynamics (mechanics)medicineCancerStatistical physicsDiffusion (business)medicine.diseaseHaptotaxisQuantitative Biology::Cell BehaviorMathematics
researchProduct

Electrical Coupling in Ensembles of Nonexcitable Cells: Modeling the Spatial Map of Single Cell Potentials

2015

We analyze the coupling of model nonexcitable (non-neural) cells assuming that the cell membrane potential is the basic individual property. We obtain this potential on the basis of the inward and outward rectifying voltage-gated channels characteristic of cell membranes. We concentrate on the electrical coupling of a cell ensemble rather than on the biochemical and mechanical characteristics of the individual cells, obtain the map of single cell potentials using simple assumptions, and suggest procedures to collectively modify this spatial map. The response of the cell ensemble to an external perturbation and the consequences of cell isolation, heterogeneity, and ensemble size are also ana…

Membrane potentialChemistryCellNanotechnologyCell CommunicationHydrogen-Ion ConcentrationModels BiologicalIon ChannelsMembrane PotentialsQuantitative Biology::Cell BehaviorSurfaces Coatings and FilmsCoupling (electronics)medicine.anatomical_structureMembraneMaterials ChemistrymedicineSpatial mapsPhysical and Theoretical ChemistryExtracellular SpaceLipid bilayerBiological systemElectromagnetic PhenomenaIon channelBiophysical chemistryThe Journal of Physical Chemistry B
researchProduct

FLUCTUATIONS IN LIPID BILAYERS: ARE THEY UNDERSTOOD?

2013

We review recent computer simulation studies of undulating lipid bilayers. Theoretical interpretations of such fluctuating membranes are most commonly based on generalized Helfrich-type elastic models, with additional contributions of local "protrusions" and/or density fluctuations. Such models provide an excellent basis for describing the fluctuations of tensionless bilayers in the fluid phase at a quantitative level. However, this description is found to fail for membranes in the gel phase and for membranes subject to high tensions. The fluctuations of tilted gel membranes show a signature of the modulated ripple structure, which is a nearby phase observed in the pretransition regime betw…

Mesoscopic physicsCondensed matter physicsChemistryTension (physics)General problemRippleBiophysicsFOS: Physical sciencesContext (language use)Condensed Matter - Soft Condensed MatterQuantitative Biology::Cell BehaviorQuantitative Biology::Subcellular ProcessesCrystallographyMembraneBiological Physics (physics.bio-ph)Structural BiologyPhase (matter)Soft Condensed Matter (cond-mat.soft)Physics - Biological PhysicsLipid bilayerMolecular BiologyBiophysical Reviews and Letters
researchProduct

Structural photoactivation of a full-length bacterial phytochrome

2016

Time-resolved x-ray solution scattering reveals the conformational signaling mechanism of a bacterial phytochrome.

Models Molecular0301 basic medicineProtein ConformationAstrophysics::High Energy Astrophysical Phenomena116 Chemical sciencesPhotoreceptors MicrobialphytochromesQuantitative Biology::Cell BehaviorStructure-Activity Relationship03 medical and health sciencesProtein structureBacterial ProteinsStructural BiologyDeinococcus radioduransBotanyResearch Articles219 Environmental biotechnologyMultidisciplinarybiologyPhytochromeHistidine kinaseta1182SciAdv r-articlesDeinococcus radioduransChromophorebiology.organism_classificationKineticsMicrosecond030104 developmental biologyStructural changephotoactivationBiophysicsPhytochromeFunction (biology)Research Article
researchProduct

Neurons as targets for T cells in the nervous system

2013

International audience; Accumulating evidence shows that T cells penetrate the central nervous system (CNS) parenchyma in several autoimmune, infectious, and degenerative neurological diseases. The structural and functional consequences for CNS neurons of their encounter with activated T cells have been investigated in several experimental systems, including ex vivo co-cultures, electrophysiology, and in vivo imaging. Here, we review the modalities of neuron/T cell interactions. We substantiate the contention that T cells are directly responsible for neuronal damage in a large number of neurological diseases and discuss mechanisms of neuronal damage mediated by distinct T cell subsets, the …

Nervous systemMultiple SclerosisT cell[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyAntigen presentationCentral nervous systemInflammationAdaptive ImmunityBiology[SDV.BC.IC] Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB]Nervous System03 medical and health sciences0302 clinical medicineT-Lymphocyte Subsets[SDV.BC.IC]Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB]medicineAnimalsHumansEncephalitis Viral030304 developmental biologyNeuronsAntigen PresentationImmunity Cellular0303 health sciencesGeneral NeuroscienceHistocompatibility Antigens Class Iapoptosis[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyT cellNeurodegenerative DiseasesAcquired immune systemcentral nervous systemneuron3. Good healthmedicine.anatomical_structurenervous system[SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyinflammation[SDV.IMM.IA] Life Sciences [q-bio]/Immunology/Adaptive immunologyencephalomyelitisNeuronNervous System Diseasesmedicine.symptomNeuroscience030217 neurology & neurosurgeryEx vivo
researchProduct

Barrier functions and paracellular integrity in human cell culture models of the proximal respiratory unit.

2009

International audience; Airway epithelial cells provide a barrier to the translocation of inhaled materials. Tight (TJ) and adherens junctions (AJ) play a key role in maintaining barrier functions, and are responsible for the selective transport of various substances through the paracellular pathway. In this study we compared a bronchial cell line (16HBE14o-) and primary bronchial cells (HBEC), both cocultivated with the fibroblast cell line Wi-38, with respect to their structural differentiation and their reaction to cytokine stimulation. HBEC formed a pseudostratified epithelial layer and expressed TJ and AJ proteins after 2 weeks in coculture. Mucus-producing and ciliated cells were foun…

Pathologymedicine.medical_specialty[SDV]Life Sciences [q-bio]Blotting WesternCell Culture TechniquesPharmaceutical ScienceBronchi[SDV.BC]Life Sciences [q-bio]/Cellular Biology[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC]BiologyModels BiologicalTight JunctionsAdherens junctionInterferon-gammaMicroscopy Electron Transmission[SDV.BC.IC]Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB]medicineHumansBarrier functionLungTumor Necrosis Factor-alphaEpithelial CellsAdherens JunctionsGeneral MedicineImmunohistochemistryCoculture TechniquesIn vitroCell biologyBlotmedicine.anatomical_structureCell cultureParacellular transportMicroscopy Electron ScanningRespiratory epitheliumBiotechnology
researchProduct