Search results for "cell differentiation"

showing 10 items of 907 documents

Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps.

2009

The 2007 European larch (Larix decidua Mill.) growing season was monitored along two elevational transects in the Lotschental valley in the Swiss Alps. Phenological observations and weekly microcore sampling of 28 larch trees were conducted between April and October 2007 at seven study sites regularly spaced from 1350 to 2150 m a.s.l. on northwest- and southeast-facing slopes. The developmental stages of nearly 75,000 individual cells assessed on 1200 thin sections were used to investigate the links between the trees' thermal regimes and growth phases including the beginning and ending of cell enlargement, wall thickening and maturation of the stem wood. Needles appeared approximately 3-4 w…

0106 biological sciences010504 meteorology & atmospheric sciencesPhysiologyGrowing seasonLarixPlant Science01 natural sciencesAltitudeTransect0105 earth and related environmental sciencesbiologyPhenologyEcologyAltitudeEuropean LarchTemperatureLapse rateCell Differentiation15. Life on landbiology.organism_classificationAgronomyProductivity (ecology)13. Climate actionSeasonsLarchSwitzerland010606 plant biology & botanyTree physiology
researchProduct

Improvement of osteogenic differentiation of human mesenchymal stem cells on composite poly l-lactic acid/nano-hydroxyapatite scaffolds for bone defe…

2020

Tissue engineering offers new approaches to repair bone defects, which cannot be repaired physiologically, developing scaffolds that mimic bone tissue architecture. Furthermore, biomechanical stimulation induced by bioreactor, provides biomechanical cues that regulate a wide range of cellular events especially required for cellular differentiation and function. The improvement of human mesenchymal stem cells (hMSCs) colonization in poly-L-lactic-acid (PLLA)/nano- hydroxyapatite (nHA) composite scaffold was evaluated in terms of cell proliferation (dsDNA content), bone differen- tiation (gene expression and protein synthesis) and ultrastructural analysis by comparing static (s3D) and dynamic…

0106 biological sciences0301 basic medicine3D cultureScaffoldCellular differentiationBioreactorBioengineeringBone tissue01 natural sciencesApplied Microbiology and BiotechnologyBone and BonesCell Line03 medical and health sciencesBioreactorsTissue engineeringPolylactic Acid-Polyglycolic Acid CopolymerPoly-L-lactic-acid/nano-hydroxyapatiteOsteogenesis010608 biotechnologyOsteogenic differentiation w/o growth factorsmedicineHumansBone regenerationCell ProliferationComposite scaffoldSettore ING-IND/24 - Principi Di Ingegneria ChimicaTissue EngineeringTissue ScaffoldsChemistryMesenchymal stem cell3D culture; Bioreactor; Composite scaffold; Osteogenic differentiation w/o growth factors; Poly-L-lactic-acid/nano-hydroxyapatite; Bioreactors; Bone and Bones; Cell Differentiation; Cell Line; Cell Proliferation; Durapatite; Humans; Mesenchymal Stem Cells; Osteogenesis; Polylactic Acid-Polyglycolic Acid Copolymer; Tissue Engineering; Tissue ScaffoldsSettore ING-IND/34 - Bioingegneria IndustrialeCell DifferentiationMesenchymal Stem CellsCell biologyRUNX2030104 developmental biologymedicine.anatomical_structureDurapatiteCell cultureBiotechnologyJournal of bioscience and bioengineering
researchProduct

A Complex Gene Network Mediated by Ethylene Signal Transduction TFs Defines the Flower Induction and Differentiation in Olea europaea L.

2021

The olive tree (Olea europaea L.) is a typical Mediterranean crop, important for olive and oil production. The high tendency to bear fruits in an uneven manner, defined as irregular or alternate bearing, results in a significant economic impact for the high losses in olives and oil production. Buds from heavy loaded (‘ON’) and unloaded (‘OFF’) branches of a unique olive tree were collected in July and the next March to compare the transcriptomic profiles and get deep insight into the molecular mechanisms regulating floral induction and differentiation. A wide set of DEGs related to ethylene TFs and to hormonal, sugar, and phenylpropanoid pathways was identified in buds collected from ‘OFF’ …

0106 biological sciences0301 basic medicineCandidate genelcsh:QH426-470Flower differentiationFlowersBiology01 natural sciencesArticleTranscriptome03 medical and health sciencesalternate bearingGene Expression Regulation PlantFlower inductionOleaBotanyGeneticsGene Regulatory NetworksOlea europaeaGeneGenetics (clinical)Plant ProteinsfloweringPhenylpropanoidfood and beveragesCell Differentiationtranscriptome profilingEthylenesbiology.organism_classificationOlive treesPlant Breedinglcsh:Genetics030104 developmental biologylateral budOleaNGS<i>Olea europaea</i>Transcriptome010606 plant biology & botanyTranscription FactorsGenes
researchProduct

Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development

2020

Plastids, the defining organelles of plant cells, undergo physiological and morphological changes to fulfill distinct biological functions. In particular, the differentiation of chloroplasts into chromoplasts results in an enhanced storage capacity for carotenoids with industrial and nutritional value such as beta-carotene (provitamin A). Here, we show that synthetically inducing a burst in the production of phytoene, the first committed intermediate of the carotenoid pathway, elicits an artificial chloroplast-to-chromoplast differentiation in leaves. Phytoene overproduction initially interferes with photosynthesis, acting as a metabolic threshold switch mechanism that weakens chloroplast i…

0106 biological sciences0301 basic medicineChloroplastsNuclear gene[SDV]Life Sciences [q-bio]ArabidopsisProtein EngineeringPhotosynthesis01 natural sciences03 medical and health scienceschemistry.chemical_compoundPhytoeneTobaccoChromoplast[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPlastidsPlastidCarotenoidComputingMilieux_MISCELLANEOUSPlant Proteinschemistry.chemical_classificationCarotenoidPhytoeneMultidisciplinarySyntheticfood and beveragesCell DifferentiationChromoplastBiological Sciencesbeta CarotenePlant cellCarotenoidsCell biology02.- Poner fin al hambre conseguir la seguridad alimentaria y una mejor nutrición y promover la agricultura sosteniblePlant LeavesChloroplastGENETICA030104 developmental biologychemistryDifferentiationChromoplat010606 plant biology & botanyProceedings of the National Academy of Sciences
researchProduct

Dendritic cell metabolism: moving beyond in vitro-culture-generated paradigms

2021

Dendritic cells (DCs) are key orchestrators of immunity and tolerance. It has become evident that DC function can be influenced by cellular metabolic programs. However, conclusions from early metabolic studies using in vitro GM-CSF DC cultures fail to correlate with bona fide DC populations. Here, we discuss the existing paradigms in the DC metabolism field, focusing on the limitations of the models utilized. Furthermore, we introduce alternative models to generate DCs in vitro that better emulate DCs found in vivo. Finally, we highlight new techniques to evaluate DC metabolism at the single-cell level. The combination of these two strategies could help advance the DC metabolism field towar…

0106 biological sciences0303 health sciencesBiomedical EngineeringCell DifferentiationBioengineeringDendritic CellsDendritic cellBiology01 natural sciencesIn vitro03 medical and health sciencesIn vivo010608 biotechnologyNeuroscienceFunction (biology)030304 developmental biologyBiotechnologyCurrent Opinion in Biotechnology
researchProduct

Injury-activated glial cells promote wound healing of the adult skin in mice

2018

Cutaneous wound healing is a complex process that aims to re-establish the original structure of the skin and its functions. Among other disorders, peripheral neuropathies are known to severely impair wound healing capabilities of the skin, revealing the importance of skin innervation for proper repair. Here, we report that peripheral glia are crucially involved in this process. Using a mouse model of wound healing, combined with in vivo fate mapping, we show that injury activates peripheral glia by promoting de-differentiation, cell-cycle re-entry and dissemination of the cells into the wound bed. Moreover, injury-activated glia upregulate the expression of many secreted factors previously…

0301 basic medicine10017 Institute of AnatomyGeneral Physics and AstronomyTransforming Growth Factor betaMedicinelcsh:ScienceMyofibroblastsCells CulturedSkinMice KnockoutMultidisciplinaryintegumentary systemSOXE Transcription FactorsQCell CycleCell Differentiation3100 General Physics and AstronomyCell biologyMice Inbred DBACutaneous woundMyofibroblastNeurogliaSignal TransductionMice 129 StrainScienceMice Transgenic610 Medicine & health1600 General ChemistryGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesParacrine signallingDownregulation and upregulationIn vivoFate mapping1300 General Biochemistry Genetics and Molecular BiologyAnimalsHumansEpithelial proliferationWound Healingbusiness.industryGene Expression ProfilingGeneral ChemistryMice Inbred C57BL030104 developmental biology10032 Clinic for Oncology and Hematology570 Life sciences; biologylcsh:QWound healingbusiness
researchProduct

Retinoic Acid affects Lung Adenocarcinoma growth by inducing differentiation via GATA6 activation and EGFR and Wnt inhibition

2016

AbstractA fundamental task in cancer research aims at the identification of new pharmacological therapies that can affect tumor growth. Differentiation therapy might exploit this function not only for hematological diseases, such as acute promyelocytic leukemia (APML) but also for epithelial tumors, including lung cancer. Here we show that Retinoic Acid (RA) arrests in vitro and in vivo the growth of Tyrosine Kinase Inhibitors (TKI) resistant Non Small Cell Lung Cancer (NSCLC). In particular, we found that RA induces G0/G1 cell cycle arrest in TKI resistant NSCLC cells and activates terminal differentiation programs by modulating the expression of GATA6, a key transcription factor involved …

0301 basic medicineAcute promyelocytic leukemiaScienceEGFRRetinoic acidMice NudeTretinoinBiologyArticle03 medical and health scienceschemistry.chemical_compoundDifferentiation therapySettore BIO/13 - Biologia ApplicataCarcinoma Non-Small-Cell LungCell Line TumorGATA6 Transcription FactormedicineRetinoic acidAnimalsHumansLung cancerProtein Kinase InhibitorsWnt Signaling PathwayTranscription factorCell ProliferationMultidisciplinaryQRWnt signaling pathwayCell Differentiationmedicine.diseaseG1 Phase Cell Cycle CheckpointsXenograft Model Antitumor Assaysrespiratory tract diseasesErbB Receptorslung cancerAnimals; Carcinoma Non-Small-Cell Lung; Cell Differentiation; Cell Line Tumor; Cell Proliferation; Drug Resistance Neoplasm; ErbB Receptors; G1 Phase Cell Cycle Checkpoints; GATA6 Transcription Factor; Humans; Mice Nude; Protein Kinase Inhibitors; Signal Transduction; Tretinoin; Wnt Signaling Pathway; Xenograft Model Antitumor Assays030104 developmental biologychemistryDrug Resistance NeoplasmImmunologyCancer researchMedicineAdenocarcinomaEngineering sciences. TechnologyTyrosine kinaseSignal Transduction
researchProduct

Spheroids from adipose-derived stem cells exhibit an miRNA profile of highly undifferentiated cells

2017

Two-dimensional (2D) cell cultures have been extensively used to investigate stem cell biology, but new insights show that the 2D model may not properly represent the potential of the tissue of origin. Conversely, three-dimensional cultures exhibit protein expression patterns and intercellular junctions that are more representative of their in vivo condition. Multiclonal cells that grow in suspension are defined as "spheroids," and we have previously demonstrated that spheroids from adipose-derived stem cells (S-ASCs) displayed enhanced regenerative capability. With the current study, we further characterized S-ASCs to further understand the molecular mechanisms underlying their stemness pr…

0301 basic medicineAdipose stem cellPhysiologyCellular differentiationClinical BiochemistryCell Culture TechniquesAdipose tissueBiology03 medical and health sciences0302 clinical medicineOsteogenesisSpheroids CellularLong-term cultureMiR-142-3pmicroRNAAdipocytesHumansInduced pluripotent stem cellCell ProliferationAdipogenesisStem CellsGene Expression Regulation DevelopmentalCell DifferentiationCell BiologyIn vitroCell biologyMicroRNAs030104 developmental biologyMesenchymal differentiationCell cultureAdipogenesis030220 oncology & carcinogenesisStem cellMiRNA
researchProduct

Prox1 Is Required for Oligodendrocyte Cell Identity in Adult Neural Stem Cells of the Subventricular Zone

2016

Abstract Adult neural stem cells with the ability to generate neurons and glia cells are active throughout life in both the dentate gyrus (DG) and the subventricular zone (SVZ). Differentiation of adult neural stem cells is induced by cell fate determinants like the transcription factor Prox1. Evidence has been provided for a function of Prox1 as an inducer of neuronal differentiation within the DG. We now show that within the SVZ Prox1 induces differentiation into oligodendrocytes. Moreover, we find that loss of Prox1 expression in vivo reduces cell migration into the corpus callosum, where the few Prox1 deficient SVZ-derived remaining cells fail to differentiate into oligodendrocytes. Thu…

0301 basic medicineAdult neurogenesisMice0302 clinical medicineNeural Stem CellsCell MovementLateral VentriclesPromoter Regions GeneticCells CulturedMOUSE-BRAINReceptors NotchOligodendrocytesNeurogenesisCell DifferentiationLINEAGEAnatomyOlfactory BulbNeural stem cellCell biologyNeuroepithelial cellAdult Stem CellsOligodendrogliaDIFFERENTIATIONEnhancer Elements Geneticmedicine.anatomical_structureGene Knockdown TechniquesMolecular MedicineSPINAL-CORDStem cellSUBCELLULAR-LOCALIZATIONProtein BindingAdult stem cellOLIG2NeurogenesisSubventricular zoneBiology03 medical and health sciencesNeurosphereProx1medicineAnimalsCell LineageOLFACTORY-BULBBody PatterningHomeodomain ProteinsTumor Suppressor ProteinsCell BiologyMAMMALIAN BRAINOligodendrocyte Transcription Factor 2030104 developmental biologyNeuropoiesisPROGENITOR CELLSGene Expression Regulationnervous system030217 neurology & neurosurgeryDevelopmental BiologyStem Cells
researchProduct

Positive Controls in Adults and Children Support That Very Few, If Any, New Neurons Are Born in the Adult Human Hippocampus.

2020

Adult hippocampal neurogenesis was originally discovered in rodents. Subsequent studies identified the adult neural stem cells and found important links between adult neurogenesis and plasticity, behavior, and disease. However, whether new neurons are produced in the human dentate gyrus (DG) during healthy aging is still debated. We and others readily observe proliferating neural progenitors in the infant hippocampus near immature cells expressing doublecortin (DCX), but the number of such cells decreases in children and few, if any, are present in adults. Recent investigations using dual antigen retrieval find many cells stained by DCX antibodies in adult human DG. This has been interprete…

0301 basic medicineAdultAging1.1 Normal biological development and functioningNeurogenesisHippocampusneural progenitorsHippocampal formationRegenerative Medicinehuman hippocampusMedical and Health SciencesHippocampus03 medical and health sciences0302 clinical medicinedoublecortinStem Cell Research - Nonembryonic - HumanUnderpinning researchmedicineHumansdentate gyrusChildnew neuronsPediatricNeuronsNeurology & NeurosurgeryNeuronal PlasticitybiologyGeneral NeuroscienceDentate gyrusNeurogenesisPsychology and Cognitive SciencesNeurosciencesCell DifferentiationDual PerspectivesHuman brainStem Cell ResearchNeural stem cellDoublecortin030104 developmental biologymedicine.anatomical_structureNeurologicalbiology.proteinStem Cell Research - Nonembryonic - Non-HumanMental healthNeuronNeuroscience030217 neurology & neurosurgeryThe Journal of neuroscience : the official journal of the Society for Neuroscience
researchProduct