Search results for "combinatorial"
showing 10 items of 1208 documents
Synthesis of 2-Aminothiazole Derivatives in Easy Two-Step, One-Pot Reaction
2018
Recent progress in the application of fluorinated chiral sulfinimine reagents
2018
Abstract The development of synthetic methodology allowing for a strategic incorporation of fluorine into target compounds is in a high demand in many areas of the chemical and pharmaceutical industries. In this regard, application of fluorinated chiral sulfinimine reagents, in particularly, N-tert-butylsulfinyl-3,3,3-trifluoroacetaldimine, is one of the most general and practical approaches for preparation of compounds containing pharmacophoric fluoro-amino-keto/hydroxy moieties. This article provides a timely and comprehensive overview of the recent synthetic applications of fluorinated chiral sulfinimine reagents for asymmetric synthesis of fluoro-containing polyfunctional amino-compound…
Selective Formation of 4,4'-Biphenols by Anodic Dehydrogenative Cross- and Homo-Coupling Reaction.
2019
A simple and selective electrochemical synthesis by dehydrogenative coupling of unprotected 2,6- or 2,5-substituted phenols to the desired 4,4'-biphenols is reported. Using electricity as the oxidizing reagent avoids pre-functionalization of the starting materials, since a selective activation of the substrates takes place. Without the necessity for metal-catalysts or the use of stoichiometric reagents it is an economic and environmentally friendly transformation. The elaborated electrochemical protocol leads to a broad variety of the desired 4,4'-biphenols in a very simplified manner compared to classical approaches. This is particular the case for the cross-coupled products.
Fluorocyclization of N-Propargylamides to Oxazoles by Electrochemically Generated ArIF2
2019
A sustainable synthesis of 5-fluoromethyl-2-oxazoles by use of electrochemistry has been demonstrated. Hypervalent ArIF2 is generated by direct electrochemical oxidation of iodoarene ArI in Et3N·5HF and mediates the fluorocyclization of N-propargylamides to 5-fluoromethyl-2-oxazoles. The stoichiometry in ArI turned out to be a key parameter in controlling the product selectivity. This electrochemical protocol provides access to fluorinated oxazoles starting from simply available N-propargylamides with yields up to 65% and offers a green alternative over conventional reagent-based approaches.
8-Iodonaphthalene-1-carbaldehyde: A Versatile Building Block for Diversity-Oriented Synthesis.
2016
The scarcely studied 8-halonaphthalene-1-carbaldehyde structure has been converted into the corresponding Ellman’s imine and subjected to several transformations, thus achieving an assorted library of polycyclic carbo- and heterocycles. The potential of this scaffold for Diversity-Oriented Synthesis has been shown. Most of these skeletons are unprecedented and, therefore, cover unexplored regions of the chemical space.
Mild, Fast, and Easy To Conduct MoCl5-Mediated Dehydrogenative Coupling Reactions in Flow
2018
A convenient and straightforward approach to performing oxidative coupling reactions in flow is presented. A collection of electron-rich benzene derivatives was subjected to this protocol, and the distinct utility of molybdenum pentachloride (MoCl5) is established. Using this unexplored protocol, biphenyls could be obtained in 21–91% isolated yield. This simple protocol opens a new chapter in reagent-mediated dehydrogenative coupling reactions, and yields are compared to classical approaches.
Tetrasubstituted Thieno[3,2- b]thiophenes as Hole-Transporting Materials for Perovskite Solar Cells
2019
Three hole-transporting materials (HTMs) were prepared following a straightforward synthetic route by cross-linking arylamine-based ligands with a simple thieno[3,2-b]thiophene (TbT) core. The novel HTMs were fully characterized with standard techniques to gain insight into their optical and electrochemical properties and were incorporated in solution-processed mesoporous (FAPbI3)0.85(MAPbBr3)0.15 perovskite-based solar cells. The similar molecular structure of the synthesized HTMs was leveraged to investigate the role that the bridging units between the conjugated TbT core and the peripheral arylamine units plays on their properties and thereby on the photovoltaic response. A remarkable po…
4,5-Disubstituted N -Methylimidazoles as Versatile Building Blocks for Defined Side-Chain Introduction
2017
Regioselective Metal- and Reagent-Free Arylation of Benzothiophenes by Dehydrogenative Electrosynthesis.
2018
A novel strategy for the synthesis of biaryls consisting of a benzothiophene and a phenol moiety is reported. These heterobiaryls are of utmost interest for pharmaceutical, biological, and high-performance optoelectronic applications. The metal- and reagent-free, electrosynthetic, and highly efficient method enables the generation of 2- and 3-(hydroxyphenyl)benzo[b]thiophenes in a regioselective fashion. The described one-step synthesis is easy to conduct, scalable, and inherently safe. The products are afforded in high yields of up to 88 % and with exquisite selectivity. The reaction also features a broad scope and tolerates a large variety of functional groups.
Systematic Investigation of Resorcin[4]arene-Based Cavitands as Affinity Materials on Quartz Crystal Microbalances.
2017
Resorcin[4]arene cavitands are well-known supramolecular hosts, and their outstanding guest-binding abilities in solution have been studied in detail in recent decades. In a systematic approach, different resorcin[4]arene cavitands and container molecules are characterized as affinity materials for gravimetric sensing using high-fundamental-frequency quartz crystal microbalances. Analysis of their affinity toward a series of various analytes reveals a remarkable dependence of both selectivity and sensitivity on the shape, accessibility, and size of the cavity, along with their supramolecular interactions with the host molecules.