Search results for "combinatorial"
showing 10 items of 1208 documents
Room-Temperature Phosphorescence and Efficient Singlet Oxygen Production by Cyclometalated Pt(II) Complexes with Aromatic Alkynyl Ligands
2020
The synthesis of five novel cyclometalated platinum(II) compounds containing five different alkynyl-chromophores was achieved by the reaction of the previously synthesized Pt–Cl cyclometalated compound (1) with the corresponding RC≡CH by a Sonogashira reaction. It was observed that the spectral and photophysical characteristics of the cyclometalated platinum(II) complexes (Pt–Ar) are essentially associated with the platinum-cyclometalated unit. Room-temperature emission of the Pt–Ar complexes was attributed to phosphorescence in agreement with DFT calculations. Broad nanosecond (ns)-transient absorption spectra were observed with decays approximately identical to those obtained from the emi…
Thiourea-Catalyzed Domino Michael–Mannich [3+2] Cycloadditions: A Strategy for the Asymmetric Synthesis of 3,3′-Pyrrolidinyl-dispirooxindoles
2017
The asymmetric synthesis of trifluoromethylated 3,3′-pyrrolidinyl-dispirooxindole derivatives with four contiguous stereogenic centers, including two vicinal spiro-stereocenters, is described. Employing a bifunctional thiourea catalyst, a domino Michael–Mannich [3+2] cycloaddition occurs readily between isatin ketimines and isatin-derived enoates with good yields and very high stereoselectivities, providing a direct entry to the title compounds of potential medical value.
Microporous Triptycene‐Based Affinity Materials on Quartz Crystal Microbalances for Tracing of Illicit Compounds
2019
Triptycene-based organic molecules of intrinsic microporosity (OMIMs) with extended functionalized π-surfaces are excellent materials for gas sorption and separation. In this study, the affinities of triptycene-based OMIM affinity materials on 195 MHz high-fundamental-frequency quartz crystal microbalances (HFF-QCMs) for hazardous and illicit compounds such as piperonal and (-)-norephedrine were determined. Both new and existing porous triptycene-based affinity materials were investigated, resulting in very high sensitivities and selectivities that could be applied for sensing purposes. Remarkable results were found for safrole - a starting material for illicit compounds such as ecstasy. A …
The Chemo- and Stereoselective Formation of Pallado- and Platinocryptophanes
2019
International audience
Effect of acyl-CoA oxidase activity on the accumulation of gamma-decalactone by the yeast Yarrowia lipolytica: a factorial approach.
2007
International audience; beta-Oxidation is a cyclic pathway involved in the degradation of lipids. In yeast, it occurs in peroxisomes and the first step is catalyzed by an acyl-CoA oxidase (Aoxp). The yeast Yarrowia lipolytica possesses several genes (POX) coding for Aoxps. This study is based on the factorial analysis of results obtained with the many POX derivative strains that have been constructed previously. The effect of interactions between Aoxps on the acyl-CoA oxidase (Aox) activity was important even at the second order. We then investigated the effect of Aox activity on growth and lactone production. Aox activity was correlated with acidification of the medium by cells and with ce…
Strategic Thinking under social influence: Scalability, stability and robustness of allocations
2016
This paper studies the strategic behavior of a large number of game designers and studies the scalability, stability and robustness of their allocations in a large number of homogeneous coalitional games with transferable utilities (TU). For each TU game, the characteristic function is a continuous-time stochastic process. In each game, a game designer allocates revenues based on the extra reward that a coalition has received up to the current time and the extra reward that the same coalition has received in the other games. The approach is based on the theory of mean-field games with heterogeneous groups in a multi-population regime.
2,3-Dihydrobenzofuran privileged structures as new bioinspired lead compounds for the design of mPGES-1 inhibitors
2016
International audience; 2,3-Dihydrobenzofurans are proposed as privileged structures and used as chemical platform to design small compound libraries. By combining molecular docking calculations and experimental verification of biochemical interference, we selected some potential inhibitors of microsomal prostaglandin E2 synthase (mPGES)-1. Starting from low affinity natural product 1, by our combined approach we identified the compounds 19 and 20 with biological activity in the low micromolar range. Our data suggest that the 2,3-dihydrobenzofuran derivatives might be suitable bioinspired lead compounds for development of new generation mPGES-1 inhibitors with increased affinity.
An overview on the recent developments of 1,2,4-triazine derivatives as anticancer compounds
2017
The synthesis, the antitumor activity, the SAR and, whenever described, the possible mode of action of 1,2,4-triazine derivatives, their N-oxides, N,. N'-dioxides as well as the benzo- and hetero-fused systems are reported. Herein are treated derivatives disclosed to literature from the beginning of this century up to 2016. Among the three possible triazine isomers, 1,2,4-triazines are the most studied ones and many derivatives having remarkable antitumor activity have been reported in the literature and also patented reaching advanced phases of clinical trials.
Synthesis and antitumor activities of 1,2,3-triazines and their benzo- and heterofused derivatives
2017
1,2,3-Triazines are a class of biologically active compounds that exhibit a broad spectrum of activities, including antibacterial, antifungal, antiviral, antiproliferative, analgesic and anti-inflammatory properties. This review, which covers the literature from the end of last century to 2016, treats, through a comprehensive, systematic approach, the 1,2,3-triazine and related benzo- and hetero-fused derivatives possessing antitumor activity. Their efficacy, combined with a simple synthesis confers to these molecules a great potential as scaffold for the development of antitumor compounds.
Controlled Transdermal Release of Antioxidant Ferulate by a Porous Sc(III) MOF
2020
Summary The Sc(III) MOF-type MFM-300(Sc) is demonstrated in this study to be stable under physiological conditions (PBS), biocompatible (to human skin cells), and an efficient drug carrier for the long-term controlled release (through human skin) of antioxidant ferulate. MFM-300(Sc) also preserves the antioxidant pharmacological effects of ferulate while enhancing the bio-preservation of dermal skin fibroblasts, during the delivery process. These discoveries pave the way toward the extended use of Sc(III)-based MOFs as drug delivery systems (DDSs).