Search results for "combinatorics"

showing 10 items of 1770 documents

Space-filling vs. Luzin's condition (N)

2013

Let us assume that we are given two metric spaces, where the Hausdorff dimension of the first space is strictly smaller than the one of the second space. Suppose further that the first space has sigma-finite measure with respect to the Hausdorff measure of the corresponding dimension. We show for quite general metric spaces that for any measurable surjection from the first onto the second space, there is a set of measure zero that is mapped to a set of positive measure (both measures are the Hausdorff measures corresponding to the Hausdorff dimension of the first space). We also study more general situations where the measures on the two metric spaces are not necessarily the same and not ne…

28A75 (Primary) 54C10 26B35 28A12 28A20 (Secondary)General Mathematicsta111Hausdorff spaceMathematics::General TopologySpace (mathematics)Functional Analysis (math.FA)Mathematics - Functional AnalysisSurjective functionCombinatoricsSet (abstract data type)Metric spaceMathematics - Classical Analysis and ODEsHausdorff dimensionClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Integrability of orthogonal projections, and applications to Furstenberg sets

2022

Let $\mathcal{G}(d,n)$ be the Grassmannian manifold of $n$-dimensional subspaces of $\mathbb{R}^{d}$, and let $\pi_{V} \colon \mathbb{R}^{d} \to V$ be the orthogonal projection. We prove that if $\mu$ is a compactly supported Radon measure on $\mathbb{R}^{d}$ satisfying the $s$-dimensional Frostman condition $\mu(B(x,r)) \leq Cr^{s}$ for all $x \in \mathbb{R}^{d}$ and $r > 0$, then $$\int_{\mathcal{G}(d,n)} \|\pi_{V}\mu\|_{L^{p}(V)}^{p} \, d\gamma_{d,n}(V) \tfrac{1}{2}$ and $t \geq 1 + \epsilon$ for a small absolute constant $\epsilon > 0$. We also prove a higher dimensional analogue of this estimate for codimension-1 Furstenberg sets in $\mathbb{R}^{d}$. As another corollary of our method,…

28A80 (primary) 28A78 44A12 (secondary)Mathematics - Metric GeometryMathematics - Classical Analysis and ODEsGeneral MathematicsFurstenberg setsIncidencesClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics - CombinatoricsMetric Geometry (math.MG)k-plane transformCombinatorics (math.CO)Projections
researchProduct

On the Almost Everywhere Convergence of Multiple Fourier-Haar Series

2019

The paper deals with the question of convergence of multiple Fourier-Haar series with partial sums taken over homothetic copies of a given convex bounded set $$W\subset\mathbb{R}_+^n$$ containing the intersection of some neighborhood of the origin with $$\mathbb{R}_+^n$$ . It is proved that for this type sets W with symmetric structure it is guaranteed almost everywhere convergence of Fourier-Haar series of any function from the class L(ln+L)n−1.

40A05Control and OptimizationBounded set (topological vector space)Type (model theory)01 natural sciencesmultiple Fourier-Haar seriesHomothetic transformationCombinatoricssymbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciences42C10Almost everywhere0101 mathematicsMathematicsSeries (mathematics)Applied Mathematics010102 general mathematicsRegular polygonAlmost everywhere convergenceFunction (mathematics)Fourier transformsymbols010307 mathematical physicslacunar serieAnalysisJournal of Contemporary Mathematical Analysis (Armenian Academy of Sciences)
researchProduct

Frames and weak frames for unbounded operators

2020

In 2012 G\u{a}vru\c{t}a introduced the notions of $K$-frame and of atomic system for a linear bounded operator $K$ in a Hilbert space $\mathcal{H}$, in order to decompose its range $\mathcal{R}(K)$ with a frame-like expansion. In this article we revisit these concepts for an unbounded and densely defined operator $A:\mathcal{D}(A)\to\mathcal{H}$ in two different ways. In one case we consider a non-Bessel sequence where the coefficient sequence depends continuously on $f\in\mathcal{D}(A)$ with respect to the norm of $\mathcal{H}$. In the other case we consider a Bessel sequence and the coefficient sequence depends continuously on $f\in\mathcal{D}(A)$ with respect to the graph norm of $A$.

42C15 47A05 47A63 41A65Atomic systemDensely defined operatorAtomic system010103 numerical & computational mathematics01 natural sciencesBounded operatorCombinatoricssymbols.namesakeReconstruction formulaSettore MAT/05 - Analisi MatematicaFOS: MathematicsComputational Science and EngineeringUnbounded operatorA-frame0101 mathematicsMathematicsApplied MathematicsHilbert spaceGraphFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsComputational MathematicssymbolsWeak A-framesBessel functionAdvances in Computational Mathematics
researchProduct

Structure of locally convex quasi C * -algebras

2008

There are examples of C*-algebras A that accept a locally convex *-topology τ coarser than the given one, such that Ã[τ] (the completion of A with respect to τ) is a GB*-algebra. The multiplication of A[τ] may be or not be jointly continuous. In the second case, Ã[*] may fail being a locally convex *-algebra, but it is a partial *-algebra. In both cases the structure and the representation theory of Ã[τ] are investigated. If Ã+ τ denotes the τ-closure of the positive cone A+ of the given C*-algebra A, then the property Ā+ τ ∩ (-Ā+ τ) = {0} is decisive for the existence of certain faithful *-representations of the corresponding *-algebra Ã[τ]

46L05quasi *-algebrasGeneral Mathematicslocally convex quasi $C^*$-algebrasRegular polygonStructure (category theory)FOS: Physical sciencesContext (language use)Mathematical Physics (math-ph)quasi-positivityCombinatoricsunbounded *-representationsMultiplicationquasi ∗-algebras quasi-positivity locally convex quasi C ∗ -algebras unbounded ∗-representations.46K10Algebra over a field46K70Settore MAT/07 - Fisica MatematicaMathematical PhysicsTopology (chemistry)47L60MathematicsJournal of the Mathematical Society of Japan
researchProduct

Variations of selective separability II: Discrete sets and the influence of convergence and maximality

2012

A space $X$ is called selectively separable(R-separable) if for every sequence of dense subspaces $(D_n : n\in\omega)$ one can pick finite (respectively, one-point) subsets $F_n\subset D_n$ such that $\bigcup_{n\in\omega}F_n$ is dense in $X$. These properties are much stronger than separability, but are equivalent to it in the presence of certain convergence properties. For example, we show that every Hausdorff separable radial space is R-separable and note that neither separable sequential nor separable Whyburn spaces have to be selectively separable. A space is called \emph{d-separable} if it has a dense $\sigma$-discrete subspace. We call a space $X$ D-separable if for every sequence of …

54D65 54A25 54D55 54A20H-separable spaceSubmaximalD+-separable spaceSequential spaceFUNCTION-SPACESSeparable spaceSpace (mathematics)INVARIANTSSeparable spaceCombinatoricsGN-separable spaceStrong fan tightnessM-separable spaceMaximal spaceConvergence (routing)Radial spaceFOS: MathematicsFréchet spaceCountable setStratifiable spaceWhyburn propertyTOPOLOGIESDH+-separable spaceTightnessMathematics - General TopologyMathematicsDH-separable spaceD-separable spaceSequenceExtra-resolvable spaceGeneral Topology (math.GN)Hausdorff spaceResolvableR-separable spaceLinear subspaceResolvable spaceSequentialDiscretely generated spaceSubmaximal spaceGeometry and TopologyTOPOLOGIES; FUNCTION-SPACES; INVARIANTSSS+ spaceFan tightnessCrowded spaceSubspace topologyTopology and its Applications
researchProduct

Existence de points fixes enlacés à une orbite périodique d'un homéomorphisme du plan

1992

Let f be an orientation-preserving homeomorphism of the plane such that f-Id is contracting. Under these hypotheses, we establish the existence, for every periodic orbit, of a fixed point which has nonzero linking number with this periodic orbit.

55M20 54H20Surfaces homeomorphismsPlane (geometry)Applied MathematicsGeneral Mathematics010102 general mathematics[ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]Linking numberFixed pointLinking numbers01 natural sciencesHomeomorphism010101 applied mathematicsCombinatoricssymbols.namesakesymbolsPeriodic orbitsPeriodic orbitsAstrophysics::Earth and Planetary AstrophysicsMathematics - Dynamical Systems0101 mathematicsMSC : 55M20 54H20Mathematics
researchProduct

Łojasiewicz exponents, the integral closure of ideals and Newton polyhedra

2003

We give an upper estimate for the Łojasiewicz exponent $\ell(J,I)$ of an ideal $J\subseteq A(K^{n})$ with respect to another ideal I in the ring $A(K^{n})$ of germs analytic functions $f$ : $(K^{n},\mathrm{O})\rightarrow K$ , where $K=C$ or $R$ , using Newton polyhedrons. In particular, we give a method to estimate the Łojasiewicz exponent $\alpha_{0}(f)$ of a germ $f\in A(K^{n})$ that can be applied when $f$ is Newton degenerate with respect to its Newton polyhedron.

58A20Ring (mathematics)32S05General MathematicsDegenerate energy levelsClosure (topology)Łojasiewicz exponentsreal analytic functionsCombinatoricsPolyhedronExponentNewton polyhedronsIdeal (ring theory)Analytic functionMathematicsJournal of the Mathematical Society of Japan
researchProduct

Fixed Points for Multivalued Convex Contractions on Nadler Sense Types in a Geodesic Metric Space

2019

In 1969, based on the concept of the Hausdorff metric, Nadler Jr. introduced the notion of multivalued contractions. He demonstrated that, in a complete metric space, a multivalued contraction possesses a fixed point. Later on, Nadler&rsquo

<b>54H25</b>Physics and Astronomy (miscellaneous)GeodesicGeneral MathematicsMathematics::General TopologyFixed-point theorem02 engineering and technologyFixed point01 natural sciencesComplete metric spacegeodesic metric spaceCombinatoricsregular golbal-inf function0202 electrical engineering electronic engineering information engineeringComputer Science (miscellaneous)0101 mathematicsMathematicsStatistics::Applicationslcsh:Mathematics010102 general mathematicsRegular polygonconvex multivalued left A-contractionlcsh:QA1-939Metric spaceHausdorff distancefixed point<b>47H10</b>Chemistry (miscellaneous)<title>MSC</title>020201 artificial intelligence & image processingright A-contractionSymmetry
researchProduct

Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm

2008

International audience; The aim of this work is to study different compositions in the Ga-Ge-Sb-S system for the definition of two compositions compatible with the elaboration of a single-mode fiber at the 1.55 μm telecom wavelength. The variations of the glass transition temperature (Tg), the dilatation coefficient (α) and the refractive index (n) have been studied for two glasses series: GaxGe25−xSb10S65 (series 1), Ga5Ge25−xSb10S60+x (series 2). This study has lead to the choice of the Ga4Ge21Sb10S65 composition as clad glass for the preparation of the single-mode fiber and Ga5Ge20Sb10S65 composition as the core. The discrepancies for the studied parameters between the core and clad comp…

A. ChalcogenidesMaterials scienceChalcogenideA. GlassesAnalytical chemistryMineralogy02 engineering and technology01 natural sciences010309 opticschemistry.chemical_compound0103 physical sciencesGeneral Materials ScienceFiberD. Optical propertiesMechanical EngineeringSingle-mode optical fiber[CHIM.MATE]Chemical Sciences/Material chemistryComposition (combinatorics)021001 nanoscience & nanotechnologyCondensed Matter PhysicsCore (optical fiber)WavelengthA. Optical materialschemistryMechanics of Materials[ CHIM.MATE ] Chemical Sciences/Material chemistry0210 nano-technologyGlass transitionRefractive index
researchProduct