Search results for "combinatorics"
showing 10 items of 1770 documents
Space-filling vs. Luzin's condition (N)
2013
Let us assume that we are given two metric spaces, where the Hausdorff dimension of the first space is strictly smaller than the one of the second space. Suppose further that the first space has sigma-finite measure with respect to the Hausdorff measure of the corresponding dimension. We show for quite general metric spaces that for any measurable surjection from the first onto the second space, there is a set of measure zero that is mapped to a set of positive measure (both measures are the Hausdorff measures corresponding to the Hausdorff dimension of the first space). We also study more general situations where the measures on the two metric spaces are not necessarily the same and not ne…
Integrability of orthogonal projections, and applications to Furstenberg sets
2022
Let $\mathcal{G}(d,n)$ be the Grassmannian manifold of $n$-dimensional subspaces of $\mathbb{R}^{d}$, and let $\pi_{V} \colon \mathbb{R}^{d} \to V$ be the orthogonal projection. We prove that if $\mu$ is a compactly supported Radon measure on $\mathbb{R}^{d}$ satisfying the $s$-dimensional Frostman condition $\mu(B(x,r)) \leq Cr^{s}$ for all $x \in \mathbb{R}^{d}$ and $r > 0$, then $$\int_{\mathcal{G}(d,n)} \|\pi_{V}\mu\|_{L^{p}(V)}^{p} \, d\gamma_{d,n}(V) \tfrac{1}{2}$ and $t \geq 1 + \epsilon$ for a small absolute constant $\epsilon > 0$. We also prove a higher dimensional analogue of this estimate for codimension-1 Furstenberg sets in $\mathbb{R}^{d}$. As another corollary of our method,…
On the Almost Everywhere Convergence of Multiple Fourier-Haar Series
2019
The paper deals with the question of convergence of multiple Fourier-Haar series with partial sums taken over homothetic copies of a given convex bounded set $$W\subset\mathbb{R}_+^n$$ containing the intersection of some neighborhood of the origin with $$\mathbb{R}_+^n$$ . It is proved that for this type sets W with symmetric structure it is guaranteed almost everywhere convergence of Fourier-Haar series of any function from the class L(ln+L)n−1.
Frames and weak frames for unbounded operators
2020
In 2012 G\u{a}vru\c{t}a introduced the notions of $K$-frame and of atomic system for a linear bounded operator $K$ in a Hilbert space $\mathcal{H}$, in order to decompose its range $\mathcal{R}(K)$ with a frame-like expansion. In this article we revisit these concepts for an unbounded and densely defined operator $A:\mathcal{D}(A)\to\mathcal{H}$ in two different ways. In one case we consider a non-Bessel sequence where the coefficient sequence depends continuously on $f\in\mathcal{D}(A)$ with respect to the norm of $\mathcal{H}$. In the other case we consider a Bessel sequence and the coefficient sequence depends continuously on $f\in\mathcal{D}(A)$ with respect to the graph norm of $A$.
Structure of locally convex quasi C * -algebras
2008
There are examples of C*-algebras A that accept a locally convex *-topology τ coarser than the given one, such that Ã[τ] (the completion of A with respect to τ) is a GB*-algebra. The multiplication of A[τ] may be or not be jointly continuous. In the second case, Ã[*] may fail being a locally convex *-algebra, but it is a partial *-algebra. In both cases the structure and the representation theory of Ã[τ] are investigated. If Ã+ τ denotes the τ-closure of the positive cone A+ of the given C*-algebra A, then the property Ā+ τ ∩ (-Ā+ τ) = {0} is decisive for the existence of certain faithful *-representations of the corresponding *-algebra Ã[τ]
Variations of selective separability II: Discrete sets and the influence of convergence and maximality
2012
A space $X$ is called selectively separable(R-separable) if for every sequence of dense subspaces $(D_n : n\in\omega)$ one can pick finite (respectively, one-point) subsets $F_n\subset D_n$ such that $\bigcup_{n\in\omega}F_n$ is dense in $X$. These properties are much stronger than separability, but are equivalent to it in the presence of certain convergence properties. For example, we show that every Hausdorff separable radial space is R-separable and note that neither separable sequential nor separable Whyburn spaces have to be selectively separable. A space is called \emph{d-separable} if it has a dense $\sigma$-discrete subspace. We call a space $X$ D-separable if for every sequence of …
Existence de points fixes enlacés à une orbite périodique d'un homéomorphisme du plan
1992
Let f be an orientation-preserving homeomorphism of the plane such that f-Id is contracting. Under these hypotheses, we establish the existence, for every periodic orbit, of a fixed point which has nonzero linking number with this periodic orbit.
Łojasiewicz exponents, the integral closure of ideals and Newton polyhedra
2003
We give an upper estimate for the Łojasiewicz exponent $\ell(J,I)$ of an ideal $J\subseteq A(K^{n})$ with respect to another ideal I in the ring $A(K^{n})$ of germs analytic functions $f$ : $(K^{n},\mathrm{O})\rightarrow K$ , where $K=C$ or $R$ , using Newton polyhedrons. In particular, we give a method to estimate the Łojasiewicz exponent $\alpha_{0}(f)$ of a germ $f\in A(K^{n})$ that can be applied when $f$ is Newton degenerate with respect to its Newton polyhedron.
Fixed Points for Multivalued Convex Contractions on Nadler Sense Types in a Geodesic Metric Space
2019
In 1969, based on the concept of the Hausdorff metric, Nadler Jr. introduced the notion of multivalued contractions. He demonstrated that, in a complete metric space, a multivalued contraction possesses a fixed point. Later on, Nadler&rsquo
Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm
2008
International audience; The aim of this work is to study different compositions in the Ga-Ge-Sb-S system for the definition of two compositions compatible with the elaboration of a single-mode fiber at the 1.55 μm telecom wavelength. The variations of the glass transition temperature (Tg), the dilatation coefficient (α) and the refractive index (n) have been studied for two glasses series: GaxGe25−xSb10S65 (series 1), Ga5Ge25−xSb10S60+x (series 2). This study has lead to the choice of the Ga4Ge21Sb10S65 composition as clad glass for the preparation of the single-mode fiber and Ga5Ge20Sb10S65 composition as the core. The discrepancies for the studied parameters between the core and clad comp…