Search results for "control theory"
showing 10 items of 1333 documents
Anti-swing control of a hydraulic loader crane with a hanging load
2021
Abstract In this paper, anti-swing control for a hydraulic loader crane is presented. The difference between hydraulic and electric cranes are discussed to show the challenges associated with hydraulic actuation. The hanging load dynamics and relevant kinematics of the crane are derived to create the 2-DOF anti-swing controller. The anti-swing controller is added to the electro-hydraulic motion controller via feedforward. A dynamic simulation model of the crane is made, and the control system is evaluated in simulations with a path controller in actuator space. Simulation results show significant reduction in the load swing angle during motion. Experiments are carried out to verify the perf…
Guidelines to Select Between Self-Contained Electro-Hydraulic and Electro-Mechanical Cylinder
2020
This research paper presents guidelines on how to select between self-contained electro-hydraulic and electromechanical cylinders. An example based on the motion control of a single-boom crane is studied. The sizing process of the different off-the-shelf components is analyzed in terms of design impact when replacing a traditional valve-controlled hydraulic cylinder. The self-contained electro-hydraulic solution is the best choice when a risk for high impact forces is present, when the required output power level lies continuously above 2 kW, or when installation space, weight, and cost are critical design objectives. However, the electro-mechanical solution is expected to show more control…
Backlash Identification in Two-Mass Systems by Delayed Relay Feedback
2019
Backlash, also known as mechanical play, is a piecewise differentiable nonlinearity which exists in several actuated systems, comprising, e.g., rack-and-pinion drives, shaft couplings, toothed gears, and other machine elements. Generally, the backlash is nested between the moving parts of a complex dynamic system, which handicaps its proper detection and identification. A classical example is the two-mass system which can approximate numerous mechanisms connected by a shaft (or link) with relatively high stiffness and backlash in series. Information about the presence and extent of the backlash is seldom exactly known and is rather conditional upon factors such as wear, fatigue and incipien…
A robust two-feedback loops position control algorithm for compliant low-cost series elastic actuators
2019
Elastic joints are considered to outperform rigid joints in terms of peak dynamics, collision tolerance, robustness, and energy efficiency. Therefore, intrinsically elastic joints have become progressively prominent over the last years for a variety of robotic applications. In this article, a two-feedback loops position control algorithm is proposed for an elastic actuator to deal with the influence from external disturbances. The considered elastic actuator was recently designed by our research group for Serpens, a low-cost, open-source and highly-compliant multi-purpose modular snake robot. In particular, the inner controller loop is implemented as a model reference adaptive controller (M…
Adaptive consensus of uncertain nonlinear systems with event triggered communication and intermittent actuator faults
2019
This paper investigates distributed consensus tracking problem for uncertain nonlinear systems with event-triggered communication. The common desired trajectory information and each subsystem's state will be broadcast to their linked subsystems only when predefined triggering conditions are satisfied. Compared with the existing related literature, the main features of the results presented in this paper include four folds. (i) A totally distributed adaptive control scheme is developed for multiple nonlinear systems without Lipschitz condition, while with parametric uncertainties. (ii) The derivative of desired trajectory function is allowed unknown by all subsystems and directed communicati…
Robust adaptive tracking control of uncertain systems with time-varying input delays
2017
ABSTRACTIn this paper, the problem of robust adaptive tracking control of uncertain systems with time-varying input delays is studied. Under some mild assumptions, a robust adaptive controller is designed by using adaptive backstepping technique such that the system is globally stable and the system output can track a given reference signal. At the same time, a root mean square type of bound is obtained for the tracking error as a function of design parameters and thus can be adjusted. Finally, one numerical example is given to show the effectiveness of the proposed scheme.
Adaptive Control of Soft Robots Based on an Enhanced 3D Augmented Rigid Robot Matching
2021
Despite having proven successful in generating precise motions under dynamic conditions in highly deformable soft-bodied robots, model based techniques are also prone to robustness issues connected to the intrinsic uncertain nature of the dynamics of these systems. This letter aims at tackling this challenge, by extending the augmented rigid robot formulation to a stable representation of three dimensional motions of soft robots, under Piecewise Constant Curvature hypothesis. In turn, the equivalence between soft-bodied and rigid robots permits to derive effective adaptive controllers for soft-bodied robots, achieving perfect posture regulation under considerable errors in the knowledge of …
Event-triggered robust adaptive control for discrete time uncertain systems with unmodelled dynamics and disturbances
2019
In practice, modelling errors caused by high-order unmodelled dynamics and external disturbances are unavoidable. How to ensure the robustness of an adaptive controller with respect to such modelling errors is always a critical concern. In this study, the authors consider the design of event-triggered robust adaptive control for a class of discrete-time uncertain systems which involve such modelling errors and also are allowed to be non-minimum phase. Unlike some existing event-triggered control schemes, the developed controllers do not require that the measurement errors meet the corresponding input-to-state stable condition. Global stability of the closed-loop system which means that all …
Dynamic Modeling of Planar Multi-Link Flexible Manipulators
2021
A closed-form dynamic model of the planar multi-link flexible manipulator is presented. The assumed modes method is used with the Lagrangian formulation to obtain the dynamic equations of motion. Explicit equations of motion are derived for a three-link case assuming two modes of vibration for each link. The eigenvalue problem associated with the mass boundary conditions, which changes with the robot configuration and payload, is discussed. The time-domain simulation results and frequency-domain analysis of the dynamic model are presented to show the validity of the theoretical derivation.
Performance Improvement of a Hydraulic Active/Passive Heave Compensation Winch Using Semi Secondary Motor Control: Experimental and Numerical Verific…
2020
In this paper, a newly developed controller for active heave compensated offshore cranes is compared with state-of-the-art control methods. The comparison is divided into a numerical part on stability margins as well as operational windows and an experimental validation of the expected performance improvement based on a full-scale testing on site with a crane rated to 250 metric tons. Such a crane represents the typical target for the new control method using a combination of active and passive hydraulic actuation on the main winch. The active hydraulic actuation is a hydrostatic transmission with variable-displacement pumps and variable-displacement motors. The new controller employs feedf…