Search results for "controlled release."

showing 10 items of 132 documents

Halloysite Nanotubes: Controlled Access and Release by Smart Gates

2017

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. Hollow halloysite nanotubes have been used as nanocontainers for loading and for the triggered release of calcium hydroxide for paper preservation. A strategy for placing end-stoppers into the tubular nanocontainer is proposed and the sustained release from the cavity is reported. The incorporation of Ca(OH) 2 into the nanotube lumen, as demonstrated using transmission electron microscopy (TEM) imaging and Energy Dispersive X-ray (EDX) mapping, retards the carbonatation, delaying the reaction with CO 2 gas. This effect can be further controlled by placing the end-stoppers. The obtained material is tested for paper deacidification. We…

NanotubeMaterials scienceGeneral Chemical EngineeringCarbonation02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesHalloysiteArticlelcsh:Chemistrychemistry.chemical_compoundControlled releaseGeneral Materials ScienceComposite materialCelluloseSettore CHIM/02 - Chimica FisicaNanocompositeNanocompositeCalcium hydroxideNanocontainerHalloysiteCellulose; Controlled release; Halloysite; Nanocomposite021001 nanoscience & nanotechnologyControlled release0104 chemical scienceslcsh:QD1-999chemistryCarbonatationengineeringhalloysite; nanocomposite; cellulose; controlled release0210 nano-technologyNanomaterials
researchProduct

Halloysite Nanotube with Fluorinated Lumen: Non-Foaming Nanocontainer for Storage and Controlled Release of Oxygen in Aqueous Media

2014

Halloysite clay nanotubes were selectivity modified by adsorbing perfluoroalkylated anionic surfactants at the inner surface. The modified nanotubes formed kinetically stable dispersions due to the enhanced electrostatic repulsions exercised between the particles. We proved that the modified nanotubes can be used as non-foaming oxygen nanocontainers in aqueous media. The gas release from supersaturated dispersions can be controlled by external stimuli and system composition. In conclusion, we managed to put forward an easy strategy to develop smart materials from natural nanoclays, which can endow important applications like the storage and delivery of gas.

NanotubeMaterials sciencechemistry.chemical_elementengineering.materialSmart materialHalloysiteOxygenBiomaterialsCondensed Matter::Materials ScienceFluorinated surfactantColloid and Surface ChemistryHalloysite; nanoclay; Fluorinated surfactant; Gas solubilizationOrganic chemistryPhysics::Chemical PhysicsComputer Science::DatabasesSettore CHIM/02 - Chimica FisicaSupersaturationNanocontainerHalloysiteControlled releaseSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCondensed Matter::Soft Condensed MatternanoclaychemistryChemical engineeringengineeringGas solubilizationSelectivity
researchProduct

Lipid nanocarriers containing sorafenib inhibit colonies formation in human hepatocarcinoma cells

2015

Here, the potential of two nanostructured lipid carriers (NLC) for controlled release of sorafenib was evaluated. The obtained systems showed characteristics suitable as drug delivery systems for the treatment of hepatocellular carcinoma (HCC) through parenteral administration. The use of a mixture between a solid lipid (tripalmitin) with a liquid lipid (Captex 355 EP/NF or Miglyol 812) to prepare NLC systems could give a higher drug loading capacity and a longer term stability during storage than that obtained by using only solid lipids. The obtained nanoparticles showed a nanometer size and high negative zeta potential values. Scansion electron microscopy (SEM) of the sorafenib loaded NLC…

NiacinamideSorafenibDrugCell Survivalmedia_common.quotation_subjectnanostructured lipid carriersPharmaceutical ScienceAntineoplastic AgentsPharmacologyHemolysischemistry.chemical_compoundNanostructured lipid carriers Sorafenib Drug release Angiogenesis inhibitor HepatocarcinomamedicineZeta potentialHumansParticle SizeChromatography High Pressure LiquidTriglyceridesdrug releasemedia_commonDrug CarriersPhenylurea CompoundsHep G2 Cellsmedicine.diseaseLipidsControlled releasedigestive system diseasesIn vitroDrug Liberationangiogenesis inhibitorchemistryhepatocarcinomaSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoDelayed-Action PreparationsHepatocellular carcinomaTripalmitinDrug deliveryMicroscopy Electron ScanningNanoparticlessorafenibCaprylatesmedicine.drug
researchProduct

Multi-Functional Nanogels for Tumor Targeting and Redox-Sensitive Drug and siRNA Delivery

2016

(1) Background: A new family of nanosystems able to discern between normal and tumor cells and to release a therapeutic agent in controlled way were synthetized by e-beam irradiation. This technique permits to obtain biocompatible, sterile, carboxyl-functionalized polyvinylpyrrolidone (PVP-co-acrylic acid) nanogels (NGs); (2) Methods: Here, we performed a targeting strategy based on the recognition of over-expressed proteins on tumor cells, like the folate receptor. The selective targeting was demonstrated by co-culture studies and flow cytometry analysis, using folate conjugated NGs. Moreover, nanoparticles were conjugated to a chemotherapeutic drug or to a pro-apoptotic siRNA through a gl…

PVPPharmaceutical ScienceNanogels02 engineering and technologyPharmacology01 natural sciencesAntioxidantsAnalytical Chemistryfolate-targetingPolyethylene GlycolsNanogelchemistry.chemical_compoundMiceRNA interferenceNeoplasmsDrug DiscoveryFluorescence microscopePolyethyleneimineRNA Small InterferingCytotoxicitymedicine.diagnostic_testPovidone021001 nanoscience & nanotechnologyControlled releaseCell biologyChemistry (miscellaneous)Folate receptorMolecular Medicinee-beamGSH-responsive release0210 nano-technologyOxidation-Reduction010402 general chemistrydoxorubicinArticleFlow cytometryFolic AcidCell Line TumormedicineAnimalsHumansPhysical and Theoretical ChemistryParticle SizeOrganic ChemistryGlutathione0104 chemical scienceschemistryPVP; nanogels; e-beam; folate-targeting; doxorubicin; siRNA; GSH-responsive releasesiRNACancer cellNIH 3T3 CellsNanoparticlesSettore CHIM/07 - Fondamenti Chimici Delle TecnologieFolic Acid TransportersHeLa CellsMolecules
researchProduct

Enzymatic cross-linking of pea proteins to produce microparticles : application to the encapsulation of riboflavin

2015

In this work, pea proteins behavior toward enzymatic gelation by microbial transglutaminase (MTGase) was studied at native state and after denaturation (chemical reduction or thermal denaturation). The final application was the formation of protein microparticules to encapsulate riboflavin, chosen as hydrophilic active molecule model. The extraction process of the pea protein fractions has been optimized in such a way to minimize as possible protein denaturation and recover native fractions rich in albumin (Alb) and globulin (Glob) or a mixture of both.The setting up of the enzymatic reaction monitoring methods has brought out their complementarity as well as their limits. Two new monitorin…

Pea globulinGlobuline de poisPea albuminÉmulsionTransglutaminaseMicro-encapsulationEnzymatic cross-linking reactionGels protéiques[SDV.AEN] Life Sciences [q-bio]/Food and NutritionProtéines végétalesRéticulation enzymatiqueControlled releaseLibération contrôléePlant proteinsRiboflavineAlbumine de poisProtein gels
researchProduct

Functional Magnetic Mesoporous Silica Microparticles Capped with an Azo-Derivative: A Promising Colon Drug Delivery Device

2018

[EN] Magnetic micro-sized mesoporous silica particles were used for the preparation of a gated material able to release an entrapped cargo in the presence of an azo-reducing agent and, to some extent, at acidic pH. The magnetic mesoporous microparticles were loaded with safranin O and the external surface was functionalized with an azo derivative 1 (bearing a carbamate linkage) yielding solid S1. Aqueous suspensions of S1 at pH 7.4 showed negligible safranin O release due to the presence of the bulky azo derivative attached onto the external surface of the inorganic scaffold. However, in the presence of sodium dithionite (azoreductive agent), a remarkable safranin O delivery was observed. A…

Pharmaceutical Science02 engineering and technologyFerric Compounds01 natural sciencesazo reductorcolon releaseAnalytical ChemistrySodium dithionitechemistry.chemical_compoundQUIMICA ORGANICADrug DiscoveryMoietymagnetic mesoporous silicaDrug CarriersAqueous solutionHydrolysisHydrogen-Ion ConcentrationSilicon Dioxide021001 nanoscience & nanotechnologyControlled releaseMicrospheresChemistry (miscellaneous)Drug deliveryMolecular Medicine0210 nano-technologyOxidation-ReductionPorosityColonSurface Properties010402 general chemistryArticleMagneticsChloridesSafraninQUIMICA ANALITICAHumansFerrous CompoundsPhysical and Theoretical Chemistrymagnetic mesoporous silica; azo derivatives; pH triggered; azo reductor; colon releaseQUIMICA INORGANICAOrganic ChemistryDithioniteMesoporous silica0104 chemical sciencesDrug LiberationchemistryNanoparticlesPhenazinespH triggeredMesoporous materialAzo Compoundsazo derivativesNuclear chemistryMolecules; Volume 23; Issue 2; Pages: 375
researchProduct

Propolis-Based Nanofiber Patches to Repair Corneal Microbial Keratitis

2021

In this research, polyvinyl-alcohol (PVA)/gelatin (GEL)/propolis (Ps) biocompatible nanofiber patches were fabricated via electrospinning technique. The controlled release of Propolis, surface wettability behaviors, antimicrobial activities against the S. aureus and P. aeruginosa, and biocompatibility properties with the mesenchymal stem cells (MSCs) were investigated in detail. By adding 0.5, 1, and 3 wt.% GEL into the 13 wt.% PVA, the morphological and mechanical results suggested that 13 wt.% PVA/0.5 wt.% GEL patch can be an ideal matrix for 3 and 5 wt.% propolis addition. Morphological results revealed that the diameters of the electrospun nanofiber patches were increased with GEL (from…

Pharmaceutical ScienceBiocompatible Materials02 engineering and technologyGelatinAnalytical ChemistryContact angleQD241-4410302 clinical medicineAnti-Infective AgentsSpectroscopy Fourier Transform InfraredDrug DiscoveryMesenchymal stem cell proliferationDrug CarriersChemistrySSCAFFOLDHYDROGELP<i>S. aureus</i>021001 nanoscience & nanotechnologyControlled releaseaeruginosaElectrospinningpropolisChemistry (miscellaneous)microbial keratitisPseudomonas aeruginosaBLINDNESSMolecular MedicineELECTROSPUN0210 nano-technologyStaphylococcus aureusfood.ingredient<i>P. aeruginosa</i>BiocompatibilitySurface PropertiesFABRICATIONMicrobial Sensitivity TestsCHEMICAL-COMPOSITIONaureusArticle03 medical and health sciencesfoodnanofibersPhysical and Theoretical Chemistrycorneal patchelectrospinningKeratitisCOMPOSITEGELATINOrganic ChemistryPropolisS. aureusDrug LiberationP. aeruginosaPolyvinyl AlcoholNanofiber030221 ophthalmology & optometryPROPERTYMEMBRANENuclear chemistry
researchProduct

Influence of poloxamers on the dissolution performance and stability of controlled-release formulations containing Precirol® ATO 5

2005

Abstract Lipid excipients are usually used for the development of sustained-release formulations. When used in relatively high quantities, Precirol ® ATO 5 imparts sustained-release properties to solid oral dosage forms, by forming a lipid matrix. To control or adjust the drug release kinetics from such lipid matrix however, one must often resort to complementary ingredients or techniques. This study investigates the influence of poloxamers (Lutrol ® ) included in lipid matrices composed of glyceryl palmitostearate (Precirol ® ATO 5) on their dissolution performance and their stability. The addition of these hydrophilic polymers in the lipid matrix increased the amount of theophylline relea…

Pharmaceutical ScienceExcipientPoloxamerMolding (process)In Vitro TechniquesDosage formDiglyceridesExcipientsDrug StabilityTheophyllinemedicineTechnology PharmaceuticalTheophyllineDissolutionChromatographyCalorimetry Differential ScanningViscosityChemistryWaterPoloxamerControlled releaseKineticsMicroscopy ElectronModels ChemicalSolubilityDelayed-Action PreparationsSwellingmedicine.symptomRheologyPorositymedicine.drugInternational Journal of Pharmaceutics
researchProduct

Crosslinked α,β-Polyasparthydrazide Micromatrices for Controlled Release of Anticancer Drugs

1995

The preparation of new hydrogels by the reaction of α,β- polyasparthydrazide and glutaraldehyde is reported. A different crosslinking degree was obtained by varying the ratio crosslinking agent/polymer which influenced the swelling behavior of the gel. 5-Fluorouracil, was incorporated into the matrices during the crosslinking reaction and in vitro release studies were performed in simulated gastric juice (pH 1.1) and pH 7.4 buffer solution. The hydrogels prepared were chemically stable in the dissolution media. The observed data show the potential application of these new matrices for peroral administration of anticancer agents.

Polymers and Plastics0206 medical engineeringBioengineeringmacromolecular substances02 engineering and technologyBiomaterialschemistry.chemical_compoundPolymer chemistryMaterials ChemistrymedicineDissolutionchemistry.chemical_classificationtechnology industry and agriculturePolymerBuffer solution021001 nanoscience & nanotechnology020601 biomedical engineeringControlled releaseIn vitrochemistrySelf-healing hydrogelsGlutaraldehydeSwellingmedicine.symptom0210 nano-technologyNuclear chemistryJournal of Bioactive and Compatible Polymers
researchProduct

Cross-linked natural IntegroPectin films from citrus biowaste with intrinsic antimicrobial activity

2022

AbstractPectin recovered via hydrodynamic cavitation (IntegroPectin) from lemon and grapefruit agri-food waste intrinsically containing antimicrobial bioactive substances (flavonoids, phenolic acids, terpenes, and terpenoids) was used to generate innovative and eco-compatible films that efficiently inhibit the growth of Gram-negative pathogens. Extensive characterization of films confirmed the presence of these substances, which differently interact with the polysaccharide polymer (pectin), plasticizer (glycerol), surfactant (Tween 60), and cross-linker (Ca2+), conferring to these films a unique structure. Besides, IntegroPectin-based films constitute versatile systems for the sustained, co…

Polymers and PlasticsAntimicrobial filmsTerpenesControlled releasePolyphenolsSettore BIO/19 - Microbiologia GeneraleCitrus pectinPectin filmsSettore CHIM/02 - Chimica Fisica
researchProduct