Search results for "convolutional neural network"
showing 10 items of 179 documents
Demonstration of background rejection using deep convolutional neural networks in the NEXT experiment
2021
[EN] Convolutional neural networks (CNNs) are widely used state-of-the-art computer vision tools that are becoming increasingly popular in high-energy physics. In this paper, we attempt to understand the potential of CNNs for event classification in the NEXT experiment, which will search for neutrinoless double-beta decay in Xe-136. To do so, we demonstrate the usage of CNNs for the identification of electron-positron pair production events, which exhibit a topology similar to that of a neutrinoless double-beta decay event. These events were produced in the NEXT-White high-pressure xenon TPC using 2.6 MeV gamma rays from a Th-228 calibration source. We train a network on Monte Carlo-simulat…
Differentiating Malignant from Benign Pigmented or Non-Pigmented Skin Tumours—A Pilot Study on 3D Hyperspectral Imaging of Complex Skin Surfaces and …
2022
Several optical imaging techniques have been developed to ease the burden of skin cancer disease on our health care system. Hyperspectral images can be used to identify biological tissues by their diffuse reflected spectra. In this second part of a three-phase pilot study, we used a novel hand-held SICSURFIS Spectral Imager with an adaptable field of view and target-wise selectable wavelength channels to provide detailed spectral and spatial data for lesions on complex surfaces. The hyperspectral images (33 wavelengths, 477–891 nm) provided photometric data through individually controlled illumination modules, enabling convolutional networks to utilise spectral, spatial, and skin-surface mo…
Emergency Analysis: Multitask Learning with Deep Convolutional Neural Networks for Fire Emergency Scene Parsing
2021
In this paper, we introduce a novel application of using scene semantic image segmentation for fire emergency situation analysis. To analyse a fire emergency scene, we propose to use deep convolutional image segmentation networks to identify and classify objects in a scene based on their build material and their vulnerability to catch fire. We introduce our own fire emergency scene segmentation dataset for this purpose. It consists of real world images with objects annotated on the basis of their build material. We use state-of-the-art segmentation models: DeepLabv3, DeepLabv3+, PSPNet, FCN, SegNet and UNet to compare and evaluate their performance on the fire emergency scene parsing task. …
Fingerprint classification based on deep learning approaches: Experimental findings and comparisons
2021
Biometric classification plays a key role in fingerprint characterization, especially in the identification process. In fact, reducing the number of comparisons in biometric recognition systems is essential when dealing with large-scale databases. The classification of fingerprints aims to achieve this target by splitting fingerprints into different categories. The general approach of fingerprint classification requires pre-processing techniques that are usually computationally expensive. Deep Learning is emerging as the leading field that has been successfully applied to many areas, such as image processing. This work shows the performance of pre-trained Convolutional Neural Networks (CNNs…
CNN-based People Detection in Voxel Space using Intensity Measurements and Point Cluster Flattening
2021
In this paper real-time people detection is demonstrated in a relatively large indoor industrial robot cell as well as in an outdoor environment. Six depth sensors mounted at the ceiling are used to generate a merged point cloud of the cell. The merged point cloud is segmented into clusters and flattened into gray-scale 2D images in the xy and xz planes. These images are then used as input to a classifier based on convolutional neural networks (CNNs). The final output is the 3D position (x,y,z) and bounding box representing the human. The system is able to detect and track multiple humans in real-time, both indoors and outdoors. The positional accuracy of the proposed method has been verifi…
Convolutional Neural Network-Based Human Movement Recognition Algorithm in Sports Analysis
2021
In order to analyse the sports psychology of athletes and to identify the psychology of athletes in their movements, a human action recognition (HAR) algorithm has been designed in this study. First, a HAR model is established based on the convolutional neural network (CNN) to classify the current action state by analysing the action information of a task in the collected videos. Secondly, the psychology of basketball players displaying fake actions during the offensive and defensive process is investigated by combining with related sports psychological theories. Then, the psychology of athletes is also analysed through the collected videos, so as to predict the next response action of the …
Hyperspectral image classification using CNN: Application to industrial food packaging
2021
Abstract During food tray packaging, some contamination may exist due to the presence of undesired objects. It is essential to detect anomalies during the packaging process in order to discard the faulty tray and avoid human consumption. This study demonstrates the on-line classification feasibility when using hyperspectral imaging systems for real-time food packaging control by using Convolutional Neural Networks (CNN) as a classifier in heat-sealed food trays. A hyperspectral camera is used to capture individual food tray information and fed to a CNN classifier to detect faulty food trays with object contamination. The proposed system is able to detect up to eleven different contamination…
Use of machine learning approaches to improve non-invasive skin melanoma diagnostic method in spectral range 450 - 950nm
2020
Non-invasive skin cancer diagnostic methods develop rapidly thanks to Deep Learning and Convolutional Neural Networks (CNN). Currently, two types of diagnostics are popular: (a) using single image taken under white illumination and (b) using multiple images taken in narrow spectral bands. The first method is easier to implement, but it is limited in accuracy. The second method is more sensitive, because it is possible to use illumination considering the absorption bands of the skin chromophores and the optical properties of the skin. Currently CNN use a single white light image, due to the availability of large datasets with lesion images. Since CNN processing and analysis requires a large …
Convolutional Matrix Factorization for Recommendation Explanation
2018
In this paper, we introduce a novel recommendation model, which harnesses a convolutional neural network to mine meaningful information from customer reviews, and integrates it with matrix factorization algorithm seamlessly. It is a valid method to improve the transparency of CF algorithms.
Segmentation-Free Estimation of Aortic Diameters from MRI Using Deep Learning
2021
Accurate and reproducible measurements of the aortic diameters are crucial for the diagnosis of cardiovascular diseases and for therapeutic decision making. Currently, these measurements are manually performed by healthcare professionals, being time consuming, highly variable, and suffering from lack of reproducibility. In this work we propose a supervised deep-learning method for the direct estimation of aortic diameters. The approach is devised and tested over 100 magnetic resonance angiography scans without contrast agent. All data was expert-annotated at six aortic locations typically used in clinical practice. Our approach makes use of a 3D+2D convolutional neural network (CNN) that ta…