Search results for "convolutional neural network"
showing 10 items of 179 documents
Learning to Navigate in the Gaussian Mixture Surface
2021
In the last years, deep learning models have achieved remarkable generalization capability on computer vision tasks, obtaining excellent results in fine-grained classification problems. Sophisticated approaches based-on discriminative feature learning via patches have been proposed in the literature, boosting the model performances and achieving the state-of-the-art over well-known datasets. Cross-Entropy (CE) loss function is commonly used to enhance the discriminative power of the deep learned features, encouraging the separability between the classes. However, observing the activation map generated by these models in the hidden layer, we realize that many image regions with low discrimin…
Human experts vs. machines in taxa recognition
2020
The step of expert taxa recognition currently slows down the response time of many bioassessments. Shifting to quicker and cheaper state-of-the-art machine learning approaches is still met with expert scepticism towards the ability and logic of machines. In our study, we investigate both the differences in accuracy and in the identification logic of taxonomic experts and machines. We propose a systematic approach utilizing deep Convolutional Neural Nets with the transfer learning paradigm and extensively evaluate it over a multi-pose taxonomic dataset with hierarchical labels specifically created for this comparison. We also study the prediction accuracy on different ranks of taxonomic hier…
MFNet: Multi-feature convolutional neural network for high-density crowd counting
2020
The crowd counting task involves the issue of security, so now more and more people are concerned about it. At present, the most difficult problem of population counting consists in: how to make the model distinguish human head features more finely in the densely populated area, such as head overlap and how to find a small-scale local head feature in an image with a wide range of population density. Facing these challenges, we propose a network for multiple feature convolutional neural network, which is called MFNet. It aims to get high-quality density maps in the high-density crowd scene, and at the same time to perform the task of the count and estimation of the crowd. In terms of crowd c…
Combination Of Handcrafted And Deep Learning-Based Features For 3d Mesh Quality Assessment
2020
We propose in this paper a novel objective method to evaluate the perceived visual quality of 3D meshes. The proposed method in no-reference, it relies only on the distorted mesh for the quality estimation. It is based on a pre-trained convolutional neural network (i.e VGG to extract features from the distorted mesh) and handcrafted features extracted directly from the 3D mesh (i.e curvature and dihedral angle). A General Regression Neural Network (GRNN) is used to learn the statistical parameters of the feature vectors and estimate the quality score. Experimental results from for subjective databases (LIRIS masking, LIRIS/EPFL generalpurpose, UWB compression and LEETA simplification) and c…
Automatic detection of thermal anomalies in induction motors
2021
The paper proposes a methodology based on Artificial Intelligence techniques for the automatic detection of abnormal thermal distributions in electric motors, to rapidly identify pre-faults or fault conditions. The proposed approach, applied to induction motors of different sizes, installed in waterworks plants, is based on the execution of Thermographic Non-Destructive Tests, which allow identifying abnormal operating conditions without interrupting the ordinary working conditions of the system. Thermographic images of induction motors are acquired at the installation site and with perspectives visible to the operator, which are sometimes partially obstructed. These thermographic images ar…
Convolutional neural networks in skin cancer detection using spatial and spectral domain
2019
Skin cancers are world wide deathly health problem, where significant life and cost savings could be achieved if detection of cancer can be done in early phase. Hypespectral imaging is prominent tool for non-invasive screening. In this study we compare how use of both spectral and spatial domain increase classification performance of convolutional neural networks. We compare five different neural network architectures for real patient data. Our models gain same or slightly better positive predictive value as clinicians. Towards more general and reliable model more data is needed and collection of training data should be systematic. peerReviewed
CORENup: a combination of convolutional and recurrent deep neural networks for nucleosome positioning identification
2020
Abstract Background Nucleosomes wrap the DNA into the nucleus of the Eukaryote cell and regulate its transcription phase. Several studies indicate that nucleosomes are determined by the combined effects of several factors, including DNA sequence organization. Interestingly, the identification of nucleosomes on a genomic scale has been successfully performed by computational methods using DNA sequence as input data. Results In this work, we propose CORENup, a deep learning model for nucleosome identification. CORENup processes a DNA sequence as input using one-hot representation and combines in a parallel fashion a fully convolutional neural network and a recurrent layer. These two parallel …
Deep learning model deploying on embedded skin cancer diagnostic device
2020
The number of research papers, where neural networks are applied in medical image analysis is growing. There is a proof that Convolutional Neural Networks (CNN) are able to differentiate skin cancer from nevi with greater accuracy than experienced specialists on average (sensitivity 82% and 73% accordingly).1 Team's latest research2 allows achieving even greater accuracy, by using specific narrow-band illumination. Nevertheless, the overall probability of early skin cancer detection depends on the availability of diagnostic tools. If screening tools will be available to a high number of general practices, the chance of disease detection will increase. The previous research3 shows that scala…
Deep learning strategies for automatic fault diagnosis in photovoltaic systems by thermographic images
2021
Abstract Losses of electricity production in photovoltaic systems are mainly caused by the presence of faults that affect the efficiency of the systems. The identification of any overheating in a photovoltaic module, through the thermographic non-destructive test, may be essential to maintain the correct functioning of the photovoltaic system quickly and cost-effectively, without interrupting its normal operation. This work proposes a system for the automatic classification of thermographic images using a convolutional neural network, developed via open-source libraries. To reduce image noise, various pre-processing strategies were evaluated, including normalization and homogenization of pi…
Diagnosis of Incipient Bearing Faults using Convolutional Neural Networks
2019
The majority of faults occurring in rotating electrical machinery is attributed to bearings. To reduce downtime, it is desired to apply various diagnostic methods so that bearing degradation can be detected in good time prior to a complete failure. The work presented in this paper utilizes a data-driven machine learning approach based on convolutional neural networks (CNNs) in order to diagnose different types of bearing faults. A one-dimensional CNN is trained on vibration signals and compared to a two-dimensional CNN trained in time-frequency domain using continuous wavelet transform (CWT). The proposed method is demonstrated on data collected from run-to-failure tests.The results show th…