Search results for "deep learning"

showing 10 items of 337 documents

A Convolutional Neural Network based Cascade Reconstruction for the IceCube Neutrino Observatory

2021

Continued improvements on existing reconstruction methods are vital to the success of high-energy physics experiments, such as the IceCube Neutrino Observatory. In IceCube, further challenges arise as the detector is situated at the geographic South Pole where computational resources are limited. However, to perform real-time analyses and to issue alerts to telescopes around the world, powerful and fast reconstruction methods are desired. Deep neural networks can be extremely powerful, and their usage is computationally inexpensive once the networks are trained. These characteristics make a deep learning-based approach an excellent candidate for the application in IceCube. A reconstruction …

FOS: Computer and information sciencesComputer Science - Machine LearningAstrophysics::High Energy Astrophysical Phenomenacs.LGData analysisFOS: Physical sciencesFitting methods01 natural sciencesConvolutional neural networkCalibration; Cluster finding; Data analysis; Fitting methods; Neutrino detectors; Pattern recognitionHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryMachine Learning (cs.LG)High Energy Physics - Experiment (hep-ex)Pattern recognition0103 physical sciencesNeutrino detectors010303 astronomy & astrophysicsInstrumentationMathematical Physics010308 nuclear & particles physicsbusiness.industryhep-exDeep learningCluster findingDetectorNeutrino detectorComputer engineeringOrders of magnitude (time)13. Climate actionCascadeCalibrationPattern recognition (psychology)Artificial intelligencebusiness
researchProduct

Approaching sales forecasting using recurrent neural networks and transformers

2022

Accurate and fast demand forecast is one of the hot topics in supply chain for enabling the precise execution of the corresponding downstream processes (inbound and outbound planning, inventory placement, network planning, etc). We develop three alternatives to tackle the problem of forecasting the customer sales at day/store/item level using deep learning techniques and the Corporaci\'on Favorita data set, published as part of a Kaggle competition. Our empirical results show how good performance can be achieved by using a simple sequence to sequence architecture with minimal data preprocessing effort. Additionally, we describe a training trick for making the model more time independent and…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer Science - Artificial IntelligenceGeneral Engineeringdeep learningUNESCO::CIENCIAS TECNOLÓGICASStatistics - ApplicationsComputer Science ApplicationsMachine Learning (cs.LG)Artificial Intelligence (cs.AI)Artificial Intelligencesequence to sequencetransformerApplications (stat.AP)sales forecastsupply chain
researchProduct

Road scenes analysis in adverse weather conditions by polarization-encoded images and adapted deep learning

2019

International audience; Object detection in road scenes is necessary to develop both autonomous vehicles and driving assistance systems. Even if deep neural networks for recognition task have shown great performances using conventional images, they fail to detect objects in road scenes in complex acquisition situations. In contrast, polarization images, characterizing the light wave, can robustly describe important physical properties of the object even under poor illumination or strong reflections. This paper shows how non-conventional polarimetric imaging modality overcomes the classical methods for object detection especially in adverse weather conditions. The efficiency of the proposed …

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONMachine Learning (stat.ML)02 engineering and technology010501 environmental sciences01 natural sciencesMachine Learning (cs.LG)[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI][SPI.GCIV.IT]Engineering Sciences [physics]/Civil Engineering/Infrastructures de transportStatistics - Machine Learning0202 electrical engineering electronic engineering information engineeringComputer vision0105 earth and related environmental sciencesAdverse weatherbusiness.industryDeep learningPolarization (waves)Object detectionRGB color model020201 artificial intelligence & image processingArtificial intelligencebusiness
researchProduct

Learning With Context Feedback Loop for Robust Medical Image Segmentation

2021

Deep learning has successfully been leveraged for medical image segmentation. It employs convolutional neural networks (CNN) to learn distinctive image features from a defined pixel-wise objective function. However, this approach can lead to less output pixel interdependence producing incomplete and unrealistic segmentation results. In this paper, we present a fully automatic deep learning method for robust medical image segmentation by formulating the segmentation problem as a recurrent framework using two systems. The first one is a forward system of an encoder-decoder CNN that predicts the segmentation result from the input image. The predicted probabilistic output of the forward system …

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceComputer Vision and Pattern Recognition (cs.CV)Feature vectorComputer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONContext (language use)Convolutional neural networkMachine Learning (cs.LG)Feedback030218 nuclear medicine & medical imaging03 medical and health sciences0302 clinical medicineFOS: Electrical engineering electronic engineering information engineeringImage Processing Computer-Assisted[INFO.INFO-IM]Computer Science [cs]/Medical ImagingSegmentationElectrical and Electronic EngineeringComputingMilieux_MISCELLANEOUSRadiological and Ultrasound TechnologyPixelbusiness.industryDeep learningImage and Video Processing (eess.IV)Pattern recognitionImage segmentationElectrical Engineering and Systems Science - Image and Video ProcessingFeedback loopComputer Science ApplicationsFeature (computer vision)Neural Networks ComputerArtificial intelligencebusinessSoftware
researchProduct

Enforcing Perceptual Consistency on Generative Adversarial Networks by Using the Normalised Laplacian Pyramid Distance

2019

In recent years there has been a growing interest in image generation through deep learning. While an important part of the evaluation of the generated images usually involves visual inspection, the inclusion of human perception as a factor in the training process is often overlooked. In this paper we propose an alternative perceptual regulariser for image-to-image translation using conditional generative adversarial networks (cGANs). To do so automatically (avoiding visual inspection), we use the Normalised Laplacian Pyramid Distance (NLPD) to measure the perceptual similarity between the generated image and the original image. The NLPD is based on the principle of normalising the value of…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceImage qualitymedia_common.quotation_subjectComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern RecognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONMachine Learning (stat.ML)Translation (geometry)Image (mathematics)Machine Learning (cs.LG)Consistency (database systems)Statistics - Machine LearningPerceptionFOS: Electrical engineering electronic engineering information engineeringmedia_commonbusiness.industryDeep learningImage and Video Processing (eess.IV)Contrast (statistics)Pattern recognitionGeneral MedicineImage segmentationElectrical Engineering and Systems Science - Image and Video ProcessingGenerative Adversarial NetworkPerceptionArtificial intelligencebusiness
researchProduct

Improving prostate whole gland segmentation in t2-weighted MRI with synthetically generated data

2021

Whole gland (WG) segmentation of the prostate plays a crucial role in detection, staging and treatment planning of prostate cancer (PCa). Despite promise shown by deep learning (DL) methods, they rely on the availability of a considerable amount of annotated data. Augmentation techniques such as translation and rotation of images present an alternative to increase data availability. Nevertheless, the amount of information provided by the transformed data is limited due to the correlation between the generated data and the original. Based on the recent success of generative adversarial networks (GAN) in producing synthetic images for other domains as well as in the medical domain, we present…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer sciencePipeline (computing)Computer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern Recognition02 engineering and technology030218 nuclear medicine & medical imagingMachine Learning (cs.LG)03 medical and health sciencesProstate cancer0302 clinical medicineProstate020204 information systems0202 electrical engineering electronic engineering information engineeringmedicineFOS: Electrical engineering electronic engineering information engineeringSegmentationbusiness.industryDeep learningImage and Video Processing (eess.IV)Pattern recognitionImage segmentationElectrical Engineering and Systems Science - Image and Video Processingmedicine.diseaseData availabilitymedicine.anatomical_structureArtificial intelligencebusinessT2 weighted
researchProduct

Deep Learning Based Cardiac MRI Segmentation: Do We Need Experts?

2021

Deep learning methods are the de facto solutions to a multitude of medical image analysis tasks. Cardiac MRI segmentation is one such application, which, like many others, requires a large number of annotated data so that a trained network can generalize well. Unfortunately, the process of having a large number of manually curated images by medical experts is both slow and utterly expensive. In this paper, we set out to explore whether expert knowledge is a strict requirement for the creation of annotated data sets on which machine learning can successfully be trained. To do so, we gauged the performance of three segmentation models, namely U-Net, Attention U-Net, and ENet, trained with dif…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceProcess (engineering)GeneralizationIndustrial engineering. Management engineeringComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern Recognitionheartannotated data setT55.4-60.8Machine learningcomputer.software_genre030218 nuclear medicine & medical imagingTheoretical Computer ScienceMachine Learning (cs.LG)Set (abstract data type)03 medical and health sciences0302 clinical medicineFOS: Electrical engineering electronic engineering information engineeringSegmentationNumerical AnalysisArtificial neural networkbusiness.industryDeep learningsegmentationImage and Video Processing (eess.IV)deep learningQA75.5-76.95Electrical Engineering and Systems Science - Image and Video ProcessingComputational MathematicsHausdorff distanceComputational Theory and MathematicsIndex (publishing)Electronic computers. Computer scienceArtificial intelligencebusinesscomputer030217 neurology & neurosurgeryMRI
researchProduct

Using the Tsetlin Machine to Learn Human-Interpretable Rules for High-Accuracy Text Categorization With Medical Applications

2019

Medical applications challenge today's text categorization techniques by demanding both high accuracy and ease-of-interpretation. Although deep learning has provided a leap ahead in accuracy, this leap comes at the sacrifice of interpretability. To address this accuracy-interpretability challenge, we here introduce, for the first time, a text categorization approach that leverages the recently introduced Tsetlin Machine. In all brevity, we represent the terms of a text as propositional variables. From these, we capture categories using simple propositional formulae, such as: if "rash" and "reaction" and "penicillin" then Allergy. The Tsetlin Machine learns these formulae from a labelled tex…

FOS: Computer and information sciencesComputer Science - Machine LearningGeneral Computer ScienceComputer sciencetext categorizationNatural language understandingDecision treeMachine Learning (stat.ML)02 engineering and technologyVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Annen informasjonsteknologi: 559Machine learningcomputer.software_genresupervised learningMachine Learning (cs.LG)Naive Bayes classifierText miningStatistics - Machine Learning0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceTsetlin machinehealth informaticsInterpretabilityPropositional variableClassification algorithmsArtificial neural networkbusiness.industryDeep learning020208 electrical & electronic engineeringGeneral EngineeringRandom forestSupport vector machinemachine learningCategorization020201 artificial intelligence & image processingArtificial intelligencelcsh:Electrical engineering. Electronics. Nuclear engineeringbusinessPrecision and recallcomputerlcsh:TK1-9971
researchProduct

PerceptNet: A Human Visual System Inspired Neural Network for Estimating Perceptual Distance

2019

Traditionally, the vision community has devised algorithms to estimate the distance between an original image and images that have been subject to perturbations. Inspiration was usually taken from the human visual perceptual system and how the system processes different perturbations in order to replicate to what extent it determines our ability to judge image quality. While recent works have presented deep neural networks trained to predict human perceptual quality, very few borrow any intuitions from the human visual system. To address this, we present PerceptNet, a convolutional neural network where the architecture has been chosen to reflect the structure and various stages in the human…

FOS: Computer and information sciencesComputer Science - Machine LearningVisual perceptionComputer scienceImage qualitymedia_common.quotation_subjectFeature extractionMachine Learning (stat.ML)02 engineering and technology01 natural sciencesConvolutional neural networkhuman visual systemMachine Learning (cs.LG)010309 opticsStatistics - Machine LearningPerception0103 physical sciences0202 electrical engineering electronic engineering information engineeringFOS: Electrical engineering electronic engineering information engineeringperceptual distancemedia_commonArtificial neural networkbusiness.industryDeep learningImage and Video Processing (eess.IV)Pattern recognitionElectrical Engineering and Systems Science - Image and Video Processingneural networksHuman visual system model020201 artificial intelligence & image processingArtificial intelligencebusiness
researchProduct

An Empirical Investigation into Deep and Shallow Rule Learning

2021

Inductive rule learning is arguably among the most traditional paradigms in machine learning. Although we have seen considerable progress over the years in learning rule-based theories, all state-of-the-art learners still learn descriptions that directly relate the input features to the target concept. In the simplest case, concept learning, this is a disjunctive normal form (DNF) description of the positive class. While it is clear that this is sufficient from a logical point of view because every logical expression can be reduced to an equivalent DNF expression, it could nevertheless be the case that more structured representations, which form deep theories by forming intermediate concept…

FOS: Computer and information sciencesComputer Science - Machine Learninglearning in logicComputer Science - Artificial Intelligencedeep learningmini-batch learningQA75.5-76.95stochastic optimizationMachine Learning (cs.LG)inductive rule learningArtificial Intelligence (cs.AI)Artificial IntelligenceElectronic computers. Computer scienceOriginal Research
researchProduct