Search results for "differential equations"

showing 10 items of 169 documents

Numerical Solution of Fuzzy Differential Equations with Z-numbers using Fuzzy Sumudu Transforms

2018

The uncertain nonlinear systems can be modeled with fuzzy differential equations (FDEs) and the solutions of these equations are applied to analyze many engineering problems. However, it is very difficult to obtain solutions of FDEs. In this paper, the solutions of FDEs are approximated by utilizing the fuzzy Sumudu transform (FST) method. Here, the uncertainties are in the sense of Z-numbers. Important theorems are laid down to illustrate the properties of FST. The theoretical analysis and simulation results show that this new technique is effective to estimate the solutions of FDEs.

Physics and Astronomy (miscellaneous)lcsh:TFuzzy differential equations02 engineering and technology01 natural sciencesFuzzy logiclcsh:Technology010104 statistics & probabilityNonlinear systemManagement of Technology and InnovationZ number0202 electrical engineering electronic engineering information engineeringApplied mathematics020201 artificial intelligence & image processinglcsh:QSumudu transform0101 mathematicslcsh:ScienceEngineering (miscellaneous)MathematicsAdvances in Science, Technology and Engineering Systems
researchProduct

Scattering Amplitudes from Superconformal Ward Identities

2018

We consider finite superamplitudes of N=1 matter, and use superconformal symmetry to derive powerful first-order differential equations for them. Because of on-shell collinear singularities, the Ward identities have an anomaly, which is obtained from lower-loop information. We show that in the five-particle case, the solution to the equations is uniquely fixed by the expected analytic behavior. We apply the method to a nonplanar two-loop five-particle integral. We consider finite superamplitudes of N=1 matter, and use superconformal symmetry to derive powerful first-order differential equations for them. Due to on-shell collinear singularities, the Ward identities have an anomaly, which is …

Physics010308 nuclear & particles physicsDifferential equation[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]hep-thGeneral Physics and Astronomyanomalydifferential equationshep-phsingularity: collinear16. Peace & justice01 natural sciencesSymmetry (physics)Scattering amplitudesymmetry: conformal[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]0103 physical sciencesGravitational singularityAnomaly (physics)010306 general physicsWard identity: conformalParticle Physics - TheoryMathematical physicsParticle Physics - Phenomenology
researchProduct

Dynamical Ising-like model for the two-step spin-crossover systems

2003

In order to reproduce the two-step relaxation observed experimentally in spin-crossover systems, we investigate analytically the static and the dynamic properties of a two-sublattice Ising-like Hamiltonian. The formalism is based on a stochastic master equation approach. It is solved in the mean-field approximation, and yields two coupled differential equations that correspond to the HS fractions of the sublattices A and B. Virginie.Niel@uv.es ; Jose.A.Real@uv.es

PhysicsDifferential equationsIsing model ; Magnetic transitions ; Magnetic relaxation ; Master equation ; Stochastic systems ; Differential equations ; Spin HamiltoniansMagnetic transitionsSpin HamiltoniansStochastic systemsDifferential equationTwo stepUNESCO::FÍSICAGeneral Physics and AstronomyCoupled differential equationssymbols.namesakeFormalism (philosophy of mathematics)Spin crossover:FÍSICA [UNESCO]Master equationIsing modelsymbolsIsing modelStatistical physicsMaster equationHamiltonian (quantum mechanics)Magnetic relaxation
researchProduct

STOCHASTIC DYNAMICS OF TWO PICOPHYTOPLANKTON POPULATIONS IN A REAL MARINE ECOSYSTEM

2013

A stochastic reaction-diffusion-taxis model is analyzed to get the stationary distribution along water column of two species of picophytoplankton, that is picoeukaryotes and Prochlorococcus. The model is valid for weakly mixed waters, typical of the Mediterranean Sea. External random fluctuations are considered by adding a multiplicative Gaussian noise to the dynamical equation of the nutrient concentration. The statistical tests show that shape and magnitude of the theoretical concentration profile exhibit a good agreement with the experimental findings. Finally, we study the effects of seasonal variations on picophytoplankton groups, including an oscillating term in the auxiliary equation…

PhysicsGeneral Physics and AstronomySpatial ecology; Marine ecosystems; Phytoplankton dynamics; Deep chlorophyll maximum; Random processes; Stochastic differential equationsRandom processeSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)OceanographyStochastic dynamicsMarine ecosystemStochastic differential equationsSpatial ecologyDeep chlorophyll maximumMarine ecosystemPhytoplankton dynamic
researchProduct

The $\varepsilon$-form of the differential equations for Feynman integrals in the elliptic case

2018

Feynman integrals are easily solved if their system of differential equations is in $\varepsilon$-form. In this letter we show by the explicit example of the kite integral family that an $\varepsilon$-form can even be achieved, if the Feynman integrals do not evaluate to multiple polylogarithms. The $\varepsilon$-form is obtained by a (non-algebraic) change of basis for the master integrals.

PhysicsHigh Energy Physics - TheoryNuclear and High Energy Physics010308 nuclear & particles physicsFeynman integralDifferential equationElliptic caseFOS: Physical sciences01 natural scienceslcsh:QC1-999High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)System of differential equationsHigh Energy Physics - Theory (hep-th)0103 physical sciencesComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION010306 general physicsChange of basislcsh:PhysicsMathematical physics
researchProduct

Indicators of Errors for Approximate Solutions of Differential Equations

2014

Error indicators play an important role in mesh-adaptive numerical algorithms, which currently dominate in mathematical and numerical modeling of various models in physics, chemistry, biology, economics, and other sciences. Their goal is to present a comparative measure of errors related to different parts of the computational domain, which could suggest a reasonable way of improving the finite dimensional space used to compute the approximate solution. An “ideal” error indicator must possess several properties: efficiency, computability, and universality. In other words, it must correctly reproduce the distribution of errors, be indeed computable, and be applicable to a wide set of approxi…

PhysicsMathematical optimizationDifferential equationComputabilityApproximate solutionUniversal differential equationDifferential algebraic equationType I and type II errorsNumerical partial differential equationsUniversality (dynamical systems)
researchProduct

Stochastic Analysis of a Nonlocal Fractional Viscoelastic Bar Forced by Gaussian White Noise

2017

Recently, a displacement-based nonlocal bar model has been developed. The model is based on the assumption that nonlocal forces can be modeled as viscoelastic (VE) long-range interactions mutually exerted by nonadjacent bar segments due to their relative motion; the classical local stress resultants are also present in the model. A finite element (FE) formulation with closed-form expressions of the elastic and viscoelastic matrices has also been obtained. Specifically, Caputo's fractional derivative has been used in order to model viscoelastic long-range interaction. The static and quasi-static response has been already investigated. This work investigates the stochastic response of the non…

PhysicsNon local bar fractional viscoelasticity stochastic analysisDifferential equationStochastic processBar (music)Mechanical EngineeringMathematical analysisEquations of motion02 engineering and technologyWhite noise021001 nanoscience & nanotechnologyViscoelasticityStochastic partial differential equation020303 mechanical engineering & transportsClassical mechanics0203 mechanical engineeringSettore ICAR/08 - Scienza Delle Costruzioni0210 nano-technologySafety Risk Reliability and QualitySafety ResearchNumerical partial differential equationsASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg
researchProduct

A 3D Meshless Approach for Transient Electromagnetic PDEs

2012

A full wave three dimensional meshless approach for electromagnetic transient simulations is presented. The smoothed particle hydrodynamic (SPH) method is used by considering the particles as interpolation points, arbitrarily placed in the computational domain. Maxwell’s equations in time domain with the assigned boundary and initial conditions are numerically solved by means of the proposed method. The computational tool is assessed and, for the first time, a 3D test problem is simulated in order to validate the proposed approach.

PhysicsRegularized meshless methodPartial differential equationBoundary (topology)Meshless methodPartial differential equationsDomain (mathematical analysis)Settore MAT/08 - Analisi NumericaSettore ING-IND/31 - ElettrotecnicaParticleApplied mathematicsTime domainTransient (oscillation)Interpolation
researchProduct

A posteriori estimates for a coupled piezoelectric model

2017

Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)

Physicsa posteriori error estimatesosittaisdifferentiaaliyhtälötNumerical Analysis510: Mathematik010504 meteorology & atmospheric sciencesPiezoelectricity problemcoupled systems of partial differential equations01 natural sciencesPiezoelectricity010101 applied mathematicsCoupled systems of partial differential equationsModeling and Simulationpiezoelectricity problemApplied mathematicsA priori and a posteriorinumeerinen analyysi0101 mathematicsmatemaattiset mallitvirheanalyysiA posteriori error estimate0105 earth and related environmental sciences
researchProduct

Dynamics of mean-field spin models from basic results in abstract differential equations

1992

The infinite-volume limit of the dynamics of (generalized) mean-field spin models is obtained through a direct analysis of the equations of motion, in a large class of representations of the spin algebra. The resulting dynamics fits into a general framework for systems with long-range interaction: variables at infinity appear in the time evolution of local variables and spontaneous symmetry breaking with an energy gap follows from this mechanism. The independence of the construction of the approximation scheme in finite volume is proven. © 1992 Plenum Publishing Corporation.

Physicsdifferential equations in C* and von Neumann algebraFinite volume methodPartial differential equationMathematical modelDifferential equationSpontaneous symmetry breakingEquations of motionStatistical and Nonlinear PhysicsMean field theorySymmetry breakingSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematical physicsJournal of Statistical Physics
researchProduct