Search results for "eigenvalues"

showing 10 items of 315 documents

New isoperimetric estimates for solutions to Monge - Ampère equations

2009

Abstract We prove some sharp estimates for solutions to Dirichlet problems relative to Monge–Ampere equations. Among them we show that the eigenvalue of the Dirichlet problem, when computed on convex domains with fixed measure, is maximal on ellipsoids. This result falls in the class of affine isoperimetric inequalities and shows that the eigenvalue of the Monge–Ampere operator behaves just the contrary of the first eigenvalue of the Laplace operator.

Dirichlet problemMonge-Ampère operatoreigenvalue.Mathematics::Complex VariablesApplied MathematicsMathematical analysisMathematics::Analysis of PDEsMonge–Ampère equationMonge-Ampère equationMathematics::Spectral TheoryMeasure (mathematics)Operator (computer programming)Settore MAT/05 - Analisi MatematicaAffine isoperimetric inequaltieRayleigh–Faber–Krahn inequalityAffine isoperimetric inequalitiesIsoperimetric inequalityLaplace operatorMathematical PhysicsAnalysisEigenvalues and eigenvectorsMathematics
researchProduct

A Note on Riesz Bases of Eigenvectors of Certain Holomorphic Operator-Functions

2001

Abstract Operator-valued functions of the form A (λ) ≔ A − λ + Q(λ) with λ ↦ Q(λ)(A − μ)− 1 compact-valued and holomorphic on certain domains Ω ⊂  C are considered in separable Hilbert space. Assuming that the resolvent of A is compact, its eigenvalues are simple and the corresponding eigenvectors form a Riesz basis for H of finite defect, it is shown that under certain growth conditions on ‖Q(λ)(A − λ)− 1‖ the eigenvectors of A corresponding to a part of its spectrum also form a Riesz basis of finite defect. Applications are given to operator-valued functions of the form A (λ) = A − λ + B(λ − D)− 1C and to spectral problems in L2(0, 1) of the form −f″(x) + p(x, λ)f′(x) + q(x, λ)f(x) = λf(x…

Dirichlet problemPure mathematicsApplied MathematicsMathematical analysisHolomorphic functionHilbert spaceeigenvectorsoperator-functionRiesz basisSeparable spacesymbols.namesakeDirichlet boundary conditionsymbolsCauchy's integral theoremAnalysisEigenvalues and eigenvectorsMathematicsResolventJournal of Mathematical Analysis and Applications
researchProduct

Multiple solutions for parametric double phase Dirichlet problems

2020

We consider a parametric double phase Dirichlet problem. Using variational tools together with suitable truncation and comparison techniques, we show that for all parametric values [Formula: see text] the problem has at least three nontrivial solutions, two of which have constant sign. Also, we identify the critical parameter [Formula: see text] precisely in terms of the spectrum of the [Formula: see text]-Laplacian.

Dirichlet problemlocal minimizersTruncationApplied MathematicsGeneral MathematicsMusielak-Orlicz-Sobolev spacesDirichlet distributionsymbols.namesakeDouble phaseSettore MAT/05 - Analisi MatematicaDouble phase integrandsymbolseigenvalues of the q-LaplacianApplied mathematicsSettore MAT/03 - Geometriaunbalanced growthParametric statisticsMathematics
researchProduct

Planar maps whose second iterate has a unique fixed point

2007

Let a>0, F: R^2 -> R^2 be a differentiable (not necessarily C^1) map and Spec(F) be the set of (complex) eigenvalues of the derivative F'(p) when p varies in R^2. (a) If Spec(F) is disjoint of the interval [1,1+a[, then Fix(F) has at most one element, where Fix(F) denotes the set of fixed points of F. (b) If Spec(F) is disjoint of the real line R, then Fix(F^2) has at most one element. (c) If F is a C^1 map and, for all p belonging to R^2, the derivative F'(p) is neither a homothety nor has simple real eigenvalues, then Fix(F^2) has at most one element, provided that Spec(F) is disjoint of either (c1) the union of the number 0 with the intervals ]-\infty, -1] and [1,\infty[, or (c2) t…

Discrete mathematics37G10; 37G15; 34K18Algebra and Number TheoryApplied Mathematics37G15Dynamical Systems (math.DS)Fixed point37G10Homothetic transformationPlanar graphSet (abstract data type)symbols.namesakeMathematics - Classical Analysis and ODEsSimple (abstract algebra)Classical Analysis and ODEs (math.CA)FOS: MathematicssymbolsEmbeddingDifferentiable functionMathematics - Dynamical Systems34K18AnalysisEigenvalues and eigenvectorsMathematicsJournal of Difference Equations and Applications
researchProduct

Some properties of [tr(Q2p)]12p with application to linear minimax estimation

1990

Abstract A nondifferentiable minimization problem is considered which occurs in linear minimax estimation. This problem is solved by replacing the nondifferentiable maximal eigenvalue of a real nonnegative definite matrix Q with [tr( Q 2 p )] 1/2 p . It is shown that any descent algorithm with inexact step-length rule can be used to obtain linear minimax estimators for the parameter vector of a parameter-restricted linear model.

Discrete mathematicsNumerical AnalysisAlgebra and Number TheoryMinimization problemLinear modelMathematics::Optimization and ControlMinimaxMinimax approximation algorithmMatrix (mathematics)Discrete Mathematics and CombinatoricsGeometry and TopologyMinimax estimatorDescent algorithmEigenvalues and eigenvectorsMathematicsLinear Algebra and its Applications
researchProduct

Property (R) under perturbations

2012

Property (R) holds for a bounded linear operator $${T \in L(X)}$$ , defined on a complex infinite dimensional Banach space X, if the isolated points of the spectrum of T which are eigenvalues of finite multiplicity are exactly those points λ of the approximate point spectrum for which λI − T is upper semi-Browder. In this paper we consider the permanence of this property under quasi nilpotent, Riesz, or algebraic perturbations commuting with T.

Discrete mathematicsProperty (R)Mathematics::Functional AnalysisPure mathematicsGeneral MathematicsWeyl's theoremSpectrum (functional analysis)Banach spaceMultiplicity (mathematics)Bounded operatorNilpotentSettore MAT/05 - Analisi MatematicaPoint (geometry)Algebraic numberEigenvalues and eigenvectorsMathematics
researchProduct

The Fine Spectre of Some Cesàro Generalized Operators Defined onℓp(p> 1)

2004

Abstract The aim of the paper is the study of the fine spectre for a class of Cesaro generalized operators, Rhaly operators, when those operators are defined on the spaces lp, p > 1.

Discrete mathematicsPure mathematicsClass (set theory)Spectrum (functional analysis)General MedicineSpectral theoremOperator theoryEigenvalues and eigenvectorsMathematicsJournal of Dynamical Systems and Geometric Theories
researchProduct

Quantum computing thanks to Bianchi groups

2018

It has been shown that the concept of a magic state (in universal quantum computing: uqc) and that of a minimal informationally complete positive operator valued measure: MIC-POVMs (in quantum measurements) are in good agreement when such a magic state is selected in the set of non-stabilizer eigenstates of permutation gates with the Pauli group acting on it [1]. Further work observed that most found low-dimensional MICs may be built from subgroups of the modular group PS L(2, Z) [2] and that this can be understood from the picture of the trefoil knot and related 3-manifolds [3]. Here one concentrates on Bianchi groups PS L(2, O10) (with O10 the integer ring over the imaginary quadratic fie…

Discrete mathematics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]010308 nuclear & particles physicsPhysicsQC1-999010103 numerical & computational mathematics01 natural sciencesRing of integers[SPI.MAT]Engineering Sciences [physics]/MaterialsModular group0103 physical sciencesPauli groupQuadratic field0101 mathematics[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsQuantumEigenvalues and eigenvectorsTrefoil knotQuantum computerMathematics
researchProduct

Weak versus strong dominance of shrinkage estimators

2021

We consider the estimation of the mean of a multivariate normal distribution with known variance. Most studies consider the risk of competing estimators, that is the trace of the mean squared error matrix. In contrast we consider the whole mean squared error matrix, in particular its eigenvalues. We prove that there are only two distinct eigenvalues and apply our findings to the James–Stein and the Thompson class of estimators. It turns out that the famous Stein paradox is no longer a paradox when we consider the whole mean squared error matrix rather than only its trace.

Economics and EconometricsClass (set theory)Trace (linear algebra)James–SteinEconomics Econometrics and Finance (miscellaneous)James–Stein estimatorContrast (statistics)EstimatorSettore SECS-P/05 - EconometriaMultivariate normal distributionJames-SteinVariance (accounting)DevelopmentC51Dominance (ethology)C13Applied mathematicsBusiness and International ManagementShrinkageEigenvalues and eigenvectorsDominanceMathematics
researchProduct

Fabric attractors in general triclinic flow systems and their application to high strain shear zones: A dynamical system approach

2007

High strain zones may deform by flow with a triclinic symmetry. This paper describes triclinic flow in a reference frame where Instantaneous Stretching Axes (ISA) are fixed. The operation of triclinic flow is described in two ways: first in terms of flow and the nature of flow eigenvectors and in the second part of the paper in terms of finite strain. In monoclinic flow, at least one of the eigenvectors of the flow coincides with one of the ISA and one or two of the eigenvectors act as attractors of foliation or lineation elements. In triclinic flow some flow eigenvectors are undefined since the two largest eigenvalues (controlling the flow) are imaginary. Imaginary eigenvalues are particul…

EigenvectorGeologyGeometryVorticityTriclinic crystal systemDynamical systemDeformationShear zonesPhysics::Fluid DynamicsFlow kinematicGhostvectorLineationFlow (mathematics)Finite strain theoryFoliation (geology)Eigenvalues and eigenvectorsGeology
researchProduct