Search results for "elementtimenetelmä"

showing 10 items of 24 documents

A damping preconditioner for time-harmonic wave equations in fluid and elastic material

2009

A physical damping is considered as a preconditioning technique for acoustic and elastic wave scattering. The earlier preconditioners for the Helmholtz equation are generalized for elastic materials and three-dimensional domains. An algebraic multigrid method is used in approximating the inverse of damped operators. Several numerical experiments demonstrate the behavior of the method in complicated two-dimensional and three-dimensional domains. peerReviewed

Algebraic multigrid methodPhysics and Astronomy (miscellaneous)Helmholtz equationGMRESNavier equationMathematics::Numerical AnalysisMultigrid methodHelmholtz equationäärellisten elementtien menetelmäMathematicsElastic scatteringNumerical AnalysisNavierin yhtälöPreconditionerApplied MathematicsMathematical analysispohjustinAcoustic waveWave equationAlgebrallinen multigrid-menetelmäHelmholzin yhtälöGeneralized minimal residual methodComputer Science::Numerical AnalysisFinite element methodComputer Science ApplicationselementtimenetelmäComputational MathematicsClassical mechanicsModeling and SimulationPreconditioner
researchProduct

The curl and fluting of paper : The effect of elasto-plasticity

2016

An in-plane elasto-plastic material model and a hygroexpansivity model were ap­plied for paper. The input parameters for both models are fiber orientation and dry solids content. A finite element model was constructed offering possibilities for studying different structural variations of an orthotropic sheet as well as buckling behavior and internal stress situations under through-thickness strain differences. Examples related to the curl and web­fluting phenomena of paper are presented. Both studied cases presented in this paper indicates the usefulness of the hygro-elasto-plastic model in predicting the challenging deformation phe­nomena of orthotropic paper sheets. The application possib…

Curl (mathematics)elementtimenetelmäMaterials sciencehygroexpansivityflutingcurlElasto plasticitypaperiGeotechnical engineeringelasto-plasticityFluting (architecture)
researchProduct

An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation

2007

A preconditioner defined by an algebraic multigrid cycle for a damped Helmholtz operator is proposed for the Helmholtz equation. This approach is well suited for acoustic scattering problems in complicated computational domains and with varying material properties. The spectral properties of the preconditioned systems and the convergence of the GMRES method are studied with linear, quadratic, and cubic finite element discretizations. Numerical experiments are performed with two-dimensional problems describing acoustic scattering in a cross-section of a car cabin and in a layered medium. Asymptotically the number of iterations grows linearly with respect to the frequency while for lower freq…

Algebraic multigrid methodPhysics and Astronomy (miscellaneous)Helmholtz equationGMRESMathematics::Numerical Analysissymbols.namesakeMultigrid methodQuadratic equationHelmholtz equationäärellisten elementtien menetelmäMathematicsNumerical AnalysisPreconditionerApplied MathematicspohjustinMathematical analysisAlgebrallinen multigrid-menetelmäHelmholzin yhtälöComputer Science::Numerical AnalysisGeneralized minimal residual methodFinite element methodComputer Science ApplicationselementtimenetelmäComputational MathematicsModeling and SimulationHelmholtz free energysymbolsPreconditionerLaplace operatorJournal of Computational Physics
researchProduct

Shape optimization for Stokes problem with threshold slip boundary conditions

2017

This paper deals with shape optimization of systems governed by the Stokes flow with threshold slip boundary conditions. The stability of solutions to the state problem with respect to a class of domains is studied. For computational purposes the slip term and impermeability condition are handled by a regularization. To get a finite dimensional optimization problem, the optimized part of the boundary is described by B´ezier polynomials. Numerical examples illustrate the computational efficiency. peerReviewed

kitkaOptimization problemfrictionfinite element methodBézier curve02 engineering and technologySlip (materials science)variational inequality01 natural sciencesPhysics::Fluid Dynamics0202 electrical engineering electronic engineering information engineeringDiscrete Mathematics and CombinatoricsShape optimizationBoundary value problem0101 mathematicsform (structural)Mathematicsta113matematiikkamathematicsApplied Mathematicsta111010102 general mathematicsMathematical analysisStokes flowFinite element methodelementtimenetelmäClassical mechanicsStokes problemshape optimizationVariational inequality020201 artificial intelligence & image processingfriction boundary conditionAnalysisDiscrete & Continuous Dynamical Systems - S
researchProduct

Reliable computation and local mesh adaptivity in limit analysis

2019

The contribution is devoted to computations of the limit load for a perfectly plastic model with the von Mises yield criterion. The limit factor of a prescribed load is defined by a specific variational problem, the so-called limit analysis problem. This problem is solved in terms of deformation fields by a penalization, the finite element and the semismooth Newton methods. From the numerical solution, we derive a guaranteed upper bound of the limit factor. To achieve more accurate results, a local mesh adaptivity is used. peerReviewed

elementtimenetelmäpenalizationLimit analysisComputer scienceComputationvon Mises yield criterionlocal mesh adaptivitylimit analysisNewton-like methodComputational sciencePrograms and Algorithms of Numerical Mathematics 19
researchProduct

On optimal shape design of systems governed by mixed Dirichlet-Signorini boundary value problems

1983

osittaisdifferentiaaliyhtälötelementtimenetelmänumeeriset menetelmätmatemaattinen optimointiapproksimointimuoto
researchProduct

Stability of Local Out-of-Plane Deformations of Orthotropic Sheet : Numerical Approach

2018

elementtimenetelmäpaperinvalmistusdeformationvalmistustekniikkasimulointistructurestabilitymatemaattiset mallitout-of-planeheterogeenisuus
researchProduct

Multiobjective muffler shape optimization with hybrid acoustics modelling

2010

Shape optimization of a duct system with respect to sound transmission loss is considered. The objective of optimization is to maximize the sound transmission loss at multiple frequency ranges simultaneously by adjusting the shape of a reactive muffler component. The noise reduction problem is formulated as a multiobjective optimization problem. The sound attenuation for each considered frequency is determined by a hybrid method, which requires solving Helmholtz equation numerically by finite element method. The optimization is performed using non-dominated sorting genetic algorithm, NSGA-II, which is a multi-objective genetic algorithm. The hybrid numerical method is flexible with respect …

elementtimenetelmäaaltoputkishape optimizationgenetic algorithmwaveguideäärellisten elementtien menetelmämuodonoptimointigeneettinen algoritmi
researchProduct

Adaptive meshes in computer graphics and model-based simulation

2006

Monet luonnonlait voidaan ilmaista matemaattisesti joko yhtenä yhtälönä tai yhtälöjärjestelmänä. Erityisesti differentiaaliyhtälöiden ratkaisu on tärkeä esimerkiksi mekaniikassa, biologiassa tai kemiassa esiin tuleva ongelma. Useimmissa tapauksissa ratkaisu tällaisiin yhtälöihin on tuntematon, joten se täytyy löytää käyttäen tietokonekoodia. Koska tietokoneet toimivat rajoitetulla tarkkuudella ja tietomäärällä, tietokoneella saatu ratkaisu on vain approksimaatio yhtälön ratkaisulle. Tämän epätarkan tiedon käyttö tietokoneavusteisessa tekniikassa voi johtaa laitteen toimintahäiriöihin. Onkin tärkeää saada kuva, kuinka hyvin tietokoneella saatu tulos edustaa tarkkaa ratkaisua. Turchyn kehitti…

mallintaminenelementtimenetelmäsliding window progressive meshesapproksimaatiotietokonegrafiikkatietoverkotslidit
researchProduct

Inverse problems and invisibility cloaking for FEM models and resistor networks

2013

In this paper we consider inverse problems for resistor networks and for models obtained via the finite element method (FEM) for the conductivity equation. These correspond to discrete versions of the inverse conductivity problem of Calderón. We characterize FEM models corresponding to a given triangulation of the domain that are equivalent to certain resistor networks, and apply the results to study nonuniqueness of the discrete inverse problem. It turns out that the degree of nonuniqueness for the discrete problem is larger than the one for the partial differential equation. We also study invisibility cloaking for FEM models, and show how an arbitrary body can be surrounded with a layer …

finite element methodBoundary (topology)CloakingInverse35R30 65N30 05C5001 natural sciencesDomain (mathematical analysis)inversio-ongelmatMathematics - Analysis of PDEsFOS: MathematicsMathematics - Numerical Analysis0101 mathematicsMathematicsPartial differential equationinverse problemsApplied Mathematicsta111010102 general mathematicsMathematical analysisTriangulation (social science)Numerical Analysis (math.NA)Inverse problem16. Peace & justiceFinite element methodComputer Science::Other010101 applied mathematicselementtimenetelmäModeling and Simulationresistor networksAnalysis of PDEs (math.AP)
researchProduct