Search results for "epäyhtälöt"

showing 10 items of 25 documents

Fully reliable a posteriori error control for evolutionary problems

2015

Cauchy problemevolutionary problem of parabolic typeerror indicatorsosittaisdifferentiaaliyhtälötnumeeriset menetelmätvirheetOstrowski estimatesreaction-diffusion equationPoincaré-type estimatesnumeerinen analyysifunctional type a posteriori error estimatesepäyhtälötvirheanalyysiPicard-Lindelöf methoddifferentiaaliyhtälöt
researchProduct

Maximal function estimates and self-improvement results for Poincaré inequalities

2018

Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces. peerReviewed

Discrete mathematicsPure mathematicsGeneral Mathematics010102 general mathematicsAlgebraic geometryharmoninen analyysi01 natural sciencesUniversality (dynamical systems)Sobolev inequalitySobolev spacesymbols.namesakeNumber theoryinequalities0103 physical sciencesPoincaré conjecturesymbolsharmonic analysisMaximal function010307 mathematical physicsDifferentiable function0101 mathematicsfunktionaalianalyysiepäyhtälötMathematics
researchProduct

Weighted norm inequalities in a bounded domain by the sparse domination method

2019

AbstractWe prove a local two-weight Poincaré inequality for cubes using the sparse domination method that has been influential in harmonic analysis. The proof involves a localized version of the Fefferman–Stein inequality for the sharp maximal function. By establishing a local-to-global result in a bounded domain satisfying a Boman chain condition, we show a two-weight p-Poincaré inequality in such domains. As an application we show that certain nonnegative supersolutions of the p-Laplace equation and distance weights are p-admissible in a bounded domain, in the sense that they support versions of the p-Poincaré inequality.

Discrete mathematicsosittaisdifferentiaaliyhtälötInequalityGeneral Mathematicsmedia_common.quotation_subject010102 general mathematicsPoincaré inequalityharmoninen analyysi01 natural sciences35A23 (Primary) 42B25 42B37 (Secondary)Harmonic analysis010104 statistics & probabilitysymbols.namesakeMathematics - Analysis of PDEsNorm (mathematics)Bounded functionFOS: MathematicssymbolsMaximal function0101 mathematicsepäyhtälötAnalysis of PDEs (math.AP)Mathematicsmedia_common
researchProduct

Quantitative lower bounds to the Euclidean and the Gaussian Cheeger constants

2020

We provide a quantitative lower bound to the Cheeger constant of a set $\Omega$ in both the Euclidean and the Gaussian settings in terms of suitable asymmetry indexes. We provide examples which show that these quantitative estimates are sharp.

Gaussianmedia_common.quotation_subject01 natural sciencesUpper and lower boundsAsymmetryOmegaCombinatoricsSet (abstract data type)Cheeger sets; Cheeger constant; quantitative inequalitiessymbols.namesakeMathematics - Analysis of PDEsEuclidean geometryFOS: MathematicsMathematics::Metric Geometry0101 mathematicsepäyhtälötMathematicsmedia_common49Q10 49Q20 39B62osittaisdifferentiaaliyhtälöt010102 general mathematicsCheeger constantCheeger setsArticlesCheeger constant (graph theory)010101 applied mathematicssymbolsquantitative inequalitiesAnalysis of PDEs (math.AP)Annales Fennici Mathematici
researchProduct

Accessible parts of boundary for simply connected domains

2018

For a bounded simply connected domain $\Omega\subset\mathbb{R}^2$, any point $z\in\Omega$ and any $0<\alpha<1$, we give a lower bound for the $\alpha$-dimensional Hausdorff content of the set of points in the boundary of $\Omega$ which can be joined to $z$ by a John curve with a suitable John constant depending only on $\alpha$, in terms of the distance of $z$ to $\partial\Omega$. In fact this set in the boundary contains the intersection $\partial\Omega_z\cap\partial\Omega$ of the boundary of a John sub-domain $\Omega_z$ of $\Omega$, centered at $z$, with the boundary of $\Omega$. This may be understood as a quantitative version of a result of Makarov. This estimate is then applied to obta…

General MathematicsBoundary (topology)30C35 26D1501 natural sciencesUpper and lower boundsOmegaDomain (mathematical analysis)CombinatoricsfunktioteoriaHardy inequality0103 physical sciencesSimply connected spaceClassical Analysis and ODEs (math.CA)FOS: MathematicsComplex Variables (math.CV)0101 mathematicsepäyhtälötMathematicsPointwiseMathematics - Complex VariablesApplied Mathematics010102 general mathematicsta111simply connected domainsMathematics - Classical Analysis and ODEsBounded functionContent (measure theory)010307 mathematical physicsJohn domainsProceedings of the American Mathematical Society
researchProduct

Symmetriset konveksit kappaleet

2015

Johnin ellipsoidikonveksiJohnin lauseepäyhtälötellipsoidit
researchProduct

Loomis-Whitney inequalities in Heisenberg groups

2021

This note concerns Loomis-Whitney inequalities in Heisenberg groups $\mathbb{H}^n$: $$|K| \lesssim \prod_{j=1}^{2n}|\pi_j(K)|^{\frac{n+1}{n(2n+1)}}, \qquad K \subset \mathbb{H}^n.$$ Here $\pi_{j}$, $j=1,\ldots,2n$, are the vertical Heisenberg projections to the hyperplanes $\{x_j=0\}$, respectively, and $|\cdot|$ refers to a natural Haar measure on either $\mathbb{H}^n$, or one of the hyperplanes. The Loomis-Whitney inequality in the first Heisenberg group $\mathbb{H}^1$ is a direct consequence of known $L^p$ improving properties of the standard Radon transform in $\mathbb{R}^2$. In this note, we show how the Loomis-Whitney inequalities in higher dimensional Heisenberg groups can be deduced…

Mathematics - Classical Analysis and ODEsSobolev inequalityClassical Analysis and ODEs (math.CA)FOS: Mathematicsmittateoria28A75 52C99 46E35 35R03isoperimetric inequalityepäyhtälötfunktionaalianalyysiLoomis–Whitney inequalityHeisenberg groupRadon transformmatemaattinen analyysi
researchProduct

Pointwise inequalities for Sobolev functions on generalized cuspidal domains

2022

We establish point wise inequalities for Sobolev functions on a wider class of outward cuspidal domains. It is a generalization of an earlier result by the author and his collaborators

Mathematics - Functional Analysiscuspidal domainsFOS: Mathematicspointwise inequalitySobolev functionsAstrophysics::Cosmology and Extragalactic AstrophysicsArticlesepäyhtälötfunktionaalianalyysiFunctional Analysis (math.FA)
researchProduct

Fractional Hardy-Sobolev type inequalities for half spaces and John domains

2018

As our main result we prove a variant of the fractional Hardy-Sobolev-Maz'ya inequality for half spaces. This result contains a complete answer to a recent open question by Musina and Nazarov. In the proof we apply a new version of the fractional Hardy-Sobolev inequality that we establish also for more general unbounded John domains than half spaces.

Mathematics::Functional AnalysisPure mathematicsInequalityApplied MathematicsGeneral Mathematicsmedia_common.quotation_subjectta111Mathematics::Classical Analysis and ODEsMathematics::Analysis of PDEsMathematics::Spectral TheoryType (model theory)Sobolev spacefractional Hardy-Sobolev inequalityHardy-Sobolev-Maz'ya inequalityfunktionaalianalyysiepäyhtälötJohn domainsMathematicsmedia_commonProceedings of the American Mathematical Society
researchProduct

Pointwise Inequalities for Sobolev Functions on Outward Cuspidal Domains

2019

Abstract We show that the 1st-order Sobolev spaces $W^{1,p}(\Omega _\psi ),$$1&amp;lt;p\leq \infty ,$ on cuspidal symmetric domains $\Omega _\psi $ can be characterized via pointwise inequalities. In particular, they coincide with the Hajłasz–Sobolev spaces $M^{1,p}(\Omega _\psi )$.

PointwisePure mathematicsMathematics::Functional AnalysisInequalityGeneral Mathematicsmedia_common.quotation_subject010102 general mathematicsMathematics::Analysis of PDEs01 natural sciencesFunctional Analysis (math.FA)Sobolev spaceMathematics - Functional Analysis0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsepäyhtälötfunktionaalianalyysiComputer Science::DatabasesMathematicsmedia_common
researchProduct