Search results for "expression"

showing 10 items of 5168 documents

Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls.

2013

Abstract: Growth and biomechanics of etiolated hypocotyls from Arabidopsis thaliana lines overexpressing xyloglucan endotransglucosylase/hydrolase AtXTH18, AtXTH19, AtXTH20, and PttXET16-34 were studied. Overexpression of AtXTH18, AtXTH19, and AtXTH20 stimulated growth of hypocotyls, while PttXET16-34 overexpression did not show this effect. In vitro extension of frozen/thawed hypocotyls measured by a constant-load extensiometer started from a high-amplitude initial deformation followed by a slow time-dependent creep. Creep of growing XTH-overexpressing (OE) hypocotyls was more linear in time compared with the wild type at pH 5.0, reflecting their higher potential for long-term extension. X…

0106 biological sciencesPhysiologyArabidopsisPlant ScienceBiologyReal-Time Polymerase Chain Reaction01 natural sciencesHypocotylCell wall03 medical and health sciencesCell WallGene Expression Regulation PlantTensile StrengthArabidopsisArabidopsis thalianaXyloglucan:xyloglucosyl transferaseBiology030304 developmental biology0303 health sciencesAgriculturafungiWild typeGlycosyltransferasesfood and beveragesXyloglucan endotransglucosylasebiology.organism_classificationHypocotylBiochemistryEtiolationBiophysics010606 plant biology & botany
researchProduct

NADPH Oxidase-Mediated Reactive Oxygen Species Production: Subcellular Localization and Reassessment of Its Role in Plant Defense

2009

International audience; Chemiluminescence detection of reactive oxygen species (ROS) triggered in tobacco BY-2 cells by the fungal elicitor cryptogein was previously demonstrated to be abolished in cells transformed with an antisense construct of the plasma membrane NADPH oxidase, NtrbohD. Here, using electron microscopy, it has been confirmed that the first hydrogen peroxide production occurring a few minutes after challenge of tobacco cells with cryptogein is plasma membrane located and NtrbohD mediated. Furthermore, the presence of NtrbohD in detergent-resistant membrane fractions could be associated with the presence of NtrbohD-mediated hydrogen peroxide patches along the plasma membran…

0106 biological sciencesPhysiologyBiology01 natural sciencesDNA AntisenseFungal Proteins03 medical and health sciencesMicroscopy Electron TransmissionNtrbohDTobaccoGene expressionNADPHPlant defense against herbivory[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCells CulturedPlant Proteins030304 developmental biologychemistry.chemical_classification0303 health sciencesReactive oxygen speciesOxidase testNADPH oxidaseHydrogen PeroxideGeneral MedicinePlants Genetically ModifiedSubcellular localizationElicitorPlant LeavesEnzymechemistryBiochemistrybiology.proteinREACTIVE OXYGEN SPECIES (ROS)OxidoreductasesReactive Oxygen SpeciesAgronomy and Crop Science010606 plant biology & botanyMolecular Plant-Microbe Interactions®
researchProduct

Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Deficiency Leads to Altered Root Development and Affects the Sugar and Amino Acid Balance in Arab…

2009

[EN] Glycolysis is a central metabolic pathway that, in plants, occurs in both the cytosol and the plastids. The glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate with concomitant reduction of NAD(+) to NADH. Both cytosolic (GAPCs) and plastidial (GAPCps) GAPDH activities have been described. However, the in vivo functions of the plastidial isoforms remain unresolved. In this work, we have identified two Arabidopsis (Arabidopsis thaliana) chloroplast/plastid-localized GAPDH isoforms (GAPCp1 and GAPCp2). gapcp double mutants display a drastic phenotype of arrested root development, dwarfism, and steri…

0106 biological sciencesPhysiologyDehydrogenaseSerine biosynthesisPlant Science01 natural sciencesSerine03 medical and health scienceschemistry.chemical_compoundBiosynthesisArabidopsisThalianaBIOQUIMICA Y BIOLOGIA MOLECULARGeneticsArabidopsis thalianaGene-expressionGlyceraldehyde 3-phosphate dehydrogenase030304 developmental biology2. Zero hunger0303 health sciencesCrucial rolebiologybiology.organism_classificationIn-source leavesMolecular characterizationMetabolic pathwayMetabolismBiochemistrychemistryOxidative stressbiology.proteinNAD+ kinaseEscherichia-ColiPathway010606 plant biology & botanyPlant Physiology
researchProduct

An STE12 gene identified in the mycorrhizal fungus Glomus intraradices restores infectivity of a hemibiotrophic plant pathogen

2009

International audience; * • Mechanisms of root penetration by arbuscular mycorrhizal (AM) fungi are unknown and investigations are hampered by the lack of transformation systems for these unculturable obligate biotrophs. Early steps of host infection by hemibiotrophic fungal phytopathogens, sharing common features with those of AM fungal colonization, depend on the transcription factor STE12. * • Using degenerated primers and rapid amplification of cDNA ends, we isolated the full-length cDNA of an STE12-like gene, GintSTE, from Glomus intraradices and profiled GintSTE expression by real-time and in situ RT-PCR. GintSTE activity and function were investigated by heterologous complementation …

0106 biological sciencesPhysiologyGLOMUS INTRARADICESGenes FungalMolecular Sequence DataMutantGerminationMYCORHIZES ARBUSCULAIRESSaccharomyces cerevisiaePlant SciencePlant Roots01 natural sciencesMicrobiologyFungal ProteinsGlomeromycota03 medical and health sciencesHOST PENETRATIONFungal StructuresGene Expression Regulation FungalMycorrhizaeSequence Homology Nucleic AcidMedicago truncatulaColletotrichumAmino Acid SequenceRNA MessengerTRANSCRIPTION FACTORMycorrhizaSTE12030304 developmental biologyPhaseolus0303 health sciencesFungal proteinbiologyMYCORRHIZAReverse Transcriptase Polymerase Chain ReactionColletotrichum lindemuthianumGene Expression Profilingfungifood and beveragesSpores Fungalbiology.organism_classificationMedicago truncatula[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyColletotrichumMutationHEMIBIOTROPHIC PATHOGENSequence AlignmentGLOMEROMYCOTA010606 plant biology & botany
researchProduct

Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression and hypersensitive response

2011

L'article original est publié par The American Society of Plant Biologists; International audience; The Arabidopsis (Arabidopsis thaliana) phytoalexin-deficient mutant pad2-1 displays enhanced susceptibility to a broad range of pathogens and herbivorous insects that correlates with deficiencies in the production of camalexin, indole glucosinolates, and salicylic acid (SA). The pad2-1 mutation is localized in the GLUTAMATE-CYSTEINE LIGASE (GCL) gene encoding the first enzyme of glutathione biosynthesis. While pad2-1 glutathione deficiency is not caused by a decrease in GCL transcripts, analysis of GCL protein level revealed that pad2-1 plants contained only 48% of the wild-type protein amoun…

0106 biological sciencesPhysiologyMutantGlutathione reductaseArabidopsisOligosaccharidesPlant Science01 natural scienceschemistry.chemical_compoundAnti-Infective AgentsGene Expression Regulation PlantCamalexinArabidopsis thaliana0303 health sciencesGlutathioneBiochemistryHost-Pathogen InteractionsDisease SusceptibilitySalicylic AcidOxidation-ReductionSignal TransductionHypersensitive responsePhytophthoradisease resistanceBiologyNitric Oxiderespiratory burst oxidase homolog d[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciencesStress PhysiologicalGeneticsPlants Interacting with Other Organismsglutathione reductase030304 developmental biologyPlant DiseasesArabidopsis ProteinsCell MembraneWild typeGlutathioneHydrogen Peroxidebiology.organism_classificationMolecular biologyPlant LeavesOxidative StresschemistryMutationglutathione-s-transferaseIsochorismate synthasebiology.proteinglutamate-cysteine ligaseReactive Oxygen Species010606 plant biology & botany
researchProduct

Physiological and Molecular Characteristics of Elicitin-Induced Systemic Acquired Resistance in Tobacco

1996

Elicitins are low molecular weight proteins secreted by all Phytophthora species analyzed so far. Application of the purified proteins to tobacco Nicotiana tabacum leads to the induction of resistance to subsequent inoculations with the black shank-causing agent, Phytophthora parasitica var nicotianae. In this paper, we describe the systemic characteristics of elicitin-induced acquired resistance in tobacco. Elicitin application is followed by the rapid translocation of the protein in the plant. The basic elicitin, cryptogein, induces necrosis formation in the leaves, which results from accumulation of the protein in these organs. Necrosis does not seem to be essential for the establishment…

0106 biological sciencesPhysiologyNicotiana tabacumPlant Science01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciences[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsGene expressionBotanyGeneticsGeneComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesbiologyINDUCTIONfungiElicitinPhytophthora nicotianaebiology.organism_classificationCell biologyPhytophthoraRESISTANCESystemic acquired resistanceSolanaceaeResearch Article010606 plant biology & botanyPlant Physiology
researchProduct

Gene regulation in parthenocarpic tomato fruit.

2009

Parthenocarpy is potentially a desirable trait for many commercially grown fruits if undesirable changes to structure, flavour, or nutrition can be avoided. Parthenocarpic transgenic tomato plants (cv MicroTom) were obtained by the regulation of genes for auxin synthesis (iaaM) or responsiveness (rolB) driven by DefH9 or the INNER NO OUTER (INO) promoter from Arabidopsis thaliana. Fruits at a breaker stage were analysed at a transcriptomic and metabolomic level using microarrays, real-time reverse transcription-polymerase chain reaction (RT-PCR) and a Pegasus III TOF (time of flight) mass spectrometer. Although differences were observed in the shape of fully ripe fruits, no clear correlatio…

0106 biological sciencesPhysiologyParthenogenesisPlant Biologyseedless fruitPlant SciencetomatoParthenocarpy01 natural sciencesSolanum lycopersicumGene Expression Regulation PlantGene expressionArabidopsis thalianaHormone metabolismPlant Proteins2. Zero hungerchemistry.chemical_classification0303 health sciencesbiologyfood and beveragesRipeningPlantsPlants Genetically ModifiedResearch PapersBiochemistryMetabolomeBiotechnologyCrop and Pasture ProductionINOPlant Biology & Botanyfruit ripeningGenetically Modified03 medical and health sciencesparthenocarpicAuxinBotanyGeneticsGenetically modified tomatoLycopersicon esculentum030304 developmental biologyNutritionfruit quality fruit ripening INO parthenocarpic seedless fruit tomato.Arabidopsis Proteinsfungifruit qualityPlantbiology.organism_classificationSeedless fruitchemistryGene Expression RegulationFruit010606 plant biology & botanyTranscription Factors
researchProduct

Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum.

2014

International audience; Diatoms constitute a major phylum of phytoplankton biodiversity in ocean water and freshwater ecosystems. They are known to respond to some chemical variations of the environment by the accumulation of triacylglycerol, but the relative changes occurring in membrane glycerolipids have not yet been studied. Our goal was first to define a reference for the glycerolipidome of the marine model diatom Phaeodactylum tricornutum, a necessary prerequisite to characterize and dissect the lipid metabolic routes that are orchestrated and regulated to build up each subcellular membrane compartment. By combining multiple analytical techniques, we determined the glycerolipid profil…

0106 biological sciencesPhysiologyPlant ScienceThylakoids01 natural sciencesPhaeodactylum tricornutumTranscriptomeMGDGNutrientnutrient starvationLipids metabolismSettore BIO/04 - Fisiologia VegetaleDigalactosyldiacylglycerolPhospholipids0303 health sciencesbiologyNitrogen starvationmicroalgaeMonogalactosyldiacyglycerolPhosphorusArticlesAdaptation PhysiologicalBiochemistryThylakoidSulfoquinovosyldiacylglycerollipids (amino acids peptides and proteins)DGDGNitrogenchemistry.chemical_elementlipidsMembrane Lipids03 medical and health sciencesSQDG[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyGenetics[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology14. Life underwaterPhaeodactylum tricornutumTriglycerides030304 developmental biologyDiatomsMembranesGene Expression ProfilingPhosphorusfungiPhosphorus starvationGlycerolipidsLipid metabolismmetabolic pathwaybiology.organism_classificationMetabolic pathwayPhosphatidylcholineDiatomchemistryPhytoplanktonLipidomics010606 plant biology & botany
researchProduct

Elicitor and resistance-inducing activities of -1,4 cellodextrins in grapevine, comparison with -1,3 glucans and -1,4 oligogalacturonides

2007

Cellodextrins (CD), water-soluble derivatives of cellulose composed of beta-1,4 glucoside residues, have been shown to induce a variety of defence responses in grapevine (Vitis vinifera L.) cells. The larger oligomers of CD rapidly induced transient generation of H2O2 and elevation in free cytosolic calcium, followed by a differential expression of genes encoding key enzymes of the phenylpropanoid pathway and pathogenesis-related (PR) proteins as well as stimulation of chitinase and beta-1,3 glucanase activities. Most of these defence reactions were also induced by linear beta-1,3 glucans (betaGlu) and alpha-1,4 oligogalacturonides (OGA) of different degree of polymerization (DP), but the i…

0106 biological sciencesPhysiology[SDV]Life Sciences [q-bio]Plant ScienceBiology01 natural sciences03 medical and health sciencesGene expressionBotanyGRAPEVINE[SDV.BV]Life Sciences [q-bio]/Vegetal Biology030304 developmental biologychemistry.chemical_classification0303 health sciencesPhenylpropanoidINDUCED RESISTANCEOligosaccharideGlucanaseElicitor[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyCytosolEnzymechemistryBiochemistryChitinasebiology.proteinCELLODEXTRINSDEFENCE RESPONSES010606 plant biology & botany
researchProduct

RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design.

2011

International audience; Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive experiments have not been collected in such a way that they are possible to analyze. In this review, we have collected detailed data from more than 150 experiments including all to date published and many unpublished experiments. Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involv…

0106 biological sciencesPhysiology[SDV]Life Sciences [q-bio]Tissue uptakeBioinformatics01 natural sciencesRNA interferenceRNA interferenceDatabases GeneticDelivery methodsCaenorhabditis elegansRegulation of gene expression0303 health sciencesIMMUNE-RESPONSESMANDUCA-SEXTALepidopteraRNA silencingSILKWORM BOMBYX-MORIResearch DesignInsect ProteinsRNA InterferenceMESSENGER-RNAHELICOVERPA-ARMIGERADOUBLE-STRANDED-RNAComputational biologyBiologyLepidoptera genitaliadsRNA properties03 medical and health sciencesBACILLUS-THURINGIENSISSMALL SILENCING RNASGene silencingAnimalsGene SilencingGene030304 developmental biologyRNA Double-StrandedMechanism (biology)fungiBiology and Life SciencesARMYWORM SPODOPTERA-FRUGIPERDAbiology.organism_classificationImmunity Innate010602 entomologyGene Expression RegulationInsect ScienceEpidermisCAENORHABDITIS-ELEGANSGene functionJournal of insect physiology
researchProduct