Search results for "facial recognition"
showing 10 items of 98 documents
Connectionist models of face processing: A survey
1994
Abstract Connectionist models of face recognition, identification, and categorization have appeared recently in several disciplines, including psychology, computer science, and engineering. We present a review of these models with the goal of complementing a recent survey by Samal and Iyengar [Pattern Recognition25, 65–77 (1992)] of nonconnectionist approaches to the problem of the automatic face recognition. We concentrate on models that use linear autoassociative networks, nonlinear autoassociative (or compression) and/or heteroassociative backpropagation networks. One advantage of these models over some nonconnectionist approaches is that analyzable features emerge naturally from image-b…
Fully automatic face recognition system using a combined audio-visual approach
2005
This paper presents a novel audio and video information fusion approach that greatly improves automatic recognition of people in video sequences. To that end, audio and video information is first used independently to obtain confidence values that indicate the likelihood that a specific person appears in a video shot. Finally, a post-classifier is applied to fuse audio and visual confidence values. The system has been tested on several news sequences and the results indicate that a significant improvement in the recognition rate can be achieved when both modalities are used together.
LogDet divergence-based metric learning with triplet constraints and its applications.
2014
How to select and weigh features has always been a difficult problem in many image processing and pattern recognition applications. A data-dependent distance measure can address this problem to a certain extent, and therefore an accurate and efficient metric learning becomes necessary. In this paper, we propose a LogDet divergence-based metric learning with triplet constraints (LDMLT) approach, which can learn Mahalanobis distance metric accurately and efficiently. First of all, we demonstrate the good properties of triplet constraints and apply it in LogDet divergence-based metric learning model. Then, to deal with high-dimensional data, we apply a compressed representation method to learn…
Deep learning and process understanding for data-driven Earth system science
2017
Machine learning approaches are increasingly used to extract patterns and insights from the ever-increasing stream of geospatial data, but current approaches may not be optimal when system behaviour is dominated by spatial or temporal context. Here, rather than amending classical machine learning, we argue that these contextual cues should be used as part of deep learning (an approach that is able to extract spatio-temporal features automatically) to gain further process understanding of Earth system science problems, improving the predictive ability of seasonal forecasting and modelling of long-range spatial connections across multiple timescales, for example. The next step will be a hybri…
Local Directional Multi Radius Binary Pattern
2018
Face recognition becomes an important task performed routinely in our daily lives. This application is encouraged by the wide availability of powerful and low-cost desktop and embedded computing systems, while the need comes from the integration in too much real world systems including biometric authentication, surveillance, human-computer interaction, and multimedia management. This article proposes a new variant of LBP descriptor referred as Local Directional Multi Radius Binary Pattern (LDMRBP) as a robust and effective face descriptor. The proposed LDMRBP operator is built using new neighborhood topology and new pattern encoding scheme. The adopted face recognition system consists of th…
BED: A new dataset for EEG-based biometrics
2021
Various recent research works have focused on the use of electroencephalography (EEG) signals in the field of biometrics. However, advances in this area have somehow been limited by the absence of a common testbed that would make it possible to easily compare the performance of different proposals. In this work, we present a data set that has been specifically designed to allow researchers to attempt new biometric approaches that use EEG signals captured by using relatively inexpensive consumer-grade devices. The proposed data set has been made publicly accessible and can be downloaded from https://doi.org/10.5281/zenodo.4309471 . It contains EEG recordings and responses from 21 individuals…
Embedded System Study for Real Time Boosting Based Face Detection
2006
This paper describes a study for a real time embedded face detection system. Recently, the boosting based face detection algorithms proposed by [(Viola, P and Jone, M, 2001); (Lienhart, R, et al., 2003)] have gained a lot of attention and are considered as the fastest accurate face detection algorithms today. However, the embedded implementation of such algorithms into hardware is still a challenge, since these algorithms are heavily based on memory access. A sequential implementation model is built showing its lack of regularity in time consuming and speed of detection. We propose a parallel implementation that exploits the parallelism and the pipelining in these algorithms. This implement…
Real Time Robust Embedded Face Detection Using High Level Description
2011
Face detection is a fundamental prerequisite step in the process of face recognition. It consists of automatically finding all the faces in an image despite the considerable variations of lighting, background, appearance of people, position/orientation of faces, and their sizes. This type of object detection has the distinction of having a very large intra-class, making it a particularly difficult problem to solve, especially when one wishes to achieve real time processing. A human being has a great ability to analyze images. He can extract the information about it and focus only on areas of interest (the phenomenon of attention). Thereafter he can detect faces in an extremely reliable way.…
Scaling Up a Metric Learning Algorithm for Image Recognition and Representation
2008
Maximally Collapsing Metric Learning is a recently proposed algorithm to estimate a metric matrix from labelled data. The purpose of this work is to extend this approach by considering a set of landmark points which can in principle reduce the cost per iteration in one order of magnitude. The proposal is in fact a generalized version of the original algorithm that can be applied to larger amounts of higher dimensional data. Exhaustive experimentation shows that very similar behavior at a lower cost is obtained for a wide range of the number of landmark points used.
Selective attention to facial identity and emotion in children
2008
Three age groups of participants (6–8 years, 9–11 years, adults) performed two tasks: A face recognition task and a Garner task. In the face recognition task, the participants were presented with 20 faces and then had to recognize them among 20 new faces. In the Garner tasks, the participants had to sort, as fast as possible, the photographs of two persons expressing two emotions by taking into account only one of the two dimensions (identity or emotion). When the sorting task was on one dimension, the other dimension was varied either in a correlated, a constant or an orthogonal way in distinct subsessions. The results indicated an increase in face recognition abilities. They also showed a…