Search results for "facial recognition"

showing 10 items of 98 documents

Connectionist models of face processing: A survey

1994

Abstract Connectionist models of face recognition, identification, and categorization have appeared recently in several disciplines, including psychology, computer science, and engineering. We present a review of these models with the goal of complementing a recent survey by Samal and Iyengar [Pattern Recognition25, 65–77 (1992)] of nonconnectionist approaches to the problem of the automatic face recognition. We concentrate on models that use linear autoassociative networks, nonlinear autoassociative (or compression) and/or heteroassociative backpropagation networks. One advantage of these models over some nonconnectionist approaches is that analyzable features emerge naturally from image-b…

Artificial neural networkbusiness.industryComputer scienceFeature selectionMachine learningcomputer.software_genreFacial recognition systemBackpropagationCategorizationConnectionismArtificial IntelligenceFace (geometry)Signal ProcessingPattern recognition (psychology)Computer Vision and Pattern RecognitionArtificial intelligencebusinesscomputerSoftwarePattern Recognition
researchProduct

Fully automatic face recognition system using a combined audio-visual approach

2005

This paper presents a novel audio and video information fusion approach that greatly improves automatic recognition of people in video sequences. To that end, audio and video information is first used independently to obtain confidence values that indicate the likelihood that a specific person appears in a video shot. Finally, a post-classifier is applied to fuse audio and visual confidence values. The system has been tested on several news sequences and the results indicate that a significant improvement in the recognition rate can be achieved when both modalities are used together.

Audio miningDynamic time warpingModalitiesComputer sciencebusiness.industryShot (filmmaking)Speech recognitionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONVideo sequenceFacial recognition systemVideo trackingSignal ProcessingFuse (electrical)Computer visionArtificial intelligenceElectrical and Electronic EngineeringbusinessIEE Proceedings - Vision, Image, and Signal Processing
researchProduct

LogDet divergence-based metric learning with triplet constraints and its applications.

2014

How to select and weigh features has always been a difficult problem in many image processing and pattern recognition applications. A data-dependent distance measure can address this problem to a certain extent, and therefore an accurate and efficient metric learning becomes necessary. In this paper, we propose a LogDet divergence-based metric learning with triplet constraints (LDMLT) approach, which can learn Mahalanobis distance metric accurately and efficiently. First of all, we demonstrate the good properties of triplet constraints and apply it in LogDet divergence-based metric learning model. Then, to deal with high-dimensional data, we apply a compressed representation method to learn…

AutomatedData InterpretationBiometryFeature extractionhigh dimensional datametric learningPattern RecognitionFacial recognition systemSensitivity and SpecificityMatrix decompositionPattern Recognition Automatedcompressed representationComputer-AssistedArtificial Intelligencecompressed representation; high dimensional data; LogDet divergence; metric learning; triplet constraint; Artificial Intelligence; Biometry; Data Interpretation Statistical; Face; Humans; Image Enhancement; Image Interpretation Computer-Assisted; Pattern Recognition Automated; Photography; Reproducibility of Results; Sensitivity and Specificity; Algorithms; Facial Expression; Software; Medicine (all); Computer Graphics and Computer-Aided DesignImage Interpretation Computer-AssistedPhotographyHumansDivergence (statistics)Image retrievalImage InterpretationMathematicsMahalanobis distancebusiness.industryLogDet divergenceMedicine (all)Reproducibility of ResultsPattern recognitionStatisticalImage EnhancementComputer Graphics and Computer-Aided DesignFacial ExpressionComputingMethodologies_PATTERNRECOGNITIONComputer Science::Computer Vision and Pattern RecognitionData Interpretation StatisticalFaceMetric (mathematics)Pattern recognition (psychology)Artificial intelligencetriplet constraintbusinessSoftwareAlgorithmsIEEE transactions on image processing : a publication of the IEEE Signal Processing Society
researchProduct

Deep learning and process understanding for data-driven Earth system science

2017

Machine learning approaches are increasingly used to extract patterns and insights from the ever-increasing stream of geospatial data, but current approaches may not be optimal when system behaviour is dominated by spatial or temporal context. Here, rather than amending classical machine learning, we argue that these contextual cues should be used as part of deep learning (an approach that is able to extract spatio-temporal features automatically) to gain further process understanding of Earth system science problems, improving the predictive ability of seasonal forecasting and modelling of long-range spatial connections across multiple timescales, for example. The next step will be a hybri…

Big DataTime FactorsProcess modelingGeospatial analysis010504 meteorology & atmospheric sciencesProcess (engineering)0208 environmental biotechnologyBig dataGeographic Mapping02 engineering and technologycomputer.software_genreMachine learning01 natural sciencesPattern Recognition AutomatedData-drivenDeep LearningSpatio-Temporal AnalysisHumansComputer SimulationWeather0105 earth and related environmental sciencesMultidisciplinarybusiness.industryDeep learningUncertaintyReproducibility of ResultsTranslatingRegression Psychology020801 environmental engineeringEarth system scienceKnowledgePattern recognition (psychology)Earth SciencesFemaleSeasonsArtificial intelligencebusinessPsychologyFacial RecognitioncomputerForecastingNature
researchProduct

Local Directional Multi Radius Binary Pattern

2018

Face recognition becomes an important task performed routinely in our daily lives. This application is encouraged by the wide availability of powerful and low-cost desktop and embedded computing systems, while the need comes from the integration in too much real world systems including biometric authentication, surveillance, human-computer interaction, and multimedia management. This article proposes a new variant of LBP descriptor referred as Local Directional Multi Radius Binary Pattern (LDMRBP) as a robust and effective face descriptor. The proposed LDMRBP operator is built using new neighborhood topology and new pattern encoding scheme. The adopted face recognition system consists of th…

BiometricsContextual image classificationbusiness.industryComputer scienceFeature vectorFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION020206 networking & telecommunicationsPattern recognition02 engineering and technologyBinary patternFacial recognition systemComputingMethodologies_PATTERNRECOGNITIONHistogram0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinessFace detection
researchProduct

BED: A new dataset for EEG-based biometrics

2021

Various recent research works have focused on the use of electroencephalography (EEG) signals in the field of biometrics. However, advances in this area have somehow been limited by the absence of a common testbed that would make it possible to easily compare the performance of different proposals. In this work, we present a data set that has been specifically designed to allow researchers to attempt new biometric approaches that use EEG signals captured by using relatively inexpensive consumer-grade devices. The proposed data set has been made publicly accessible and can be downloaded from https://doi.org/10.5281/zenodo.4309471 . It contains EEG recordings and responses from 21 individuals…

Biometricsmedicine.diagnostic_testComputer Networks and CommunicationsComputer sciencebusiness.industryContext (language use)ElectroencephalographyMachine learningcomputer.software_genreFacial recognition systemField (computer science)Computer Science ApplicationsData setIdentification (information)Consistency (database systems)Hardware and ArchitectureSignal ProcessingmedicineArtificial intelligencebusinesscomputerInformation Systems
researchProduct

Embedded System Study for Real Time Boosting Based Face Detection

2006

This paper describes a study for a real time embedded face detection system. Recently, the boosting based face detection algorithms proposed by [(Viola, P and Jone, M, 2001); (Lienhart, R, et al., 2003)] have gained a lot of attention and are considered as the fastest accurate face detection algorithms today. However, the embedded implementation of such algorithms into hardware is still a challenge, since these algorithms are heavily based on memory access. A sequential implementation model is built showing its lack of regularity in time consuming and speed of detection. We propose a parallel implementation that exploits the parallelism and the pipelining in these algorithms. This implement…

Boosting (machine learning)business.industryComputer scienceEmbedded systemReal-time computingDetectorFace detectionbusinessFacial recognition systemIECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics
researchProduct

Real Time Robust Embedded Face Detection Using High Level Description

2011

Face detection is a fundamental prerequisite step in the process of face recognition. It consists of automatically finding all the faces in an image despite the considerable variations of lighting, background, appearance of people, position/orientation of faces, and their sizes. This type of object detection has the distinction of having a very large intra-class, making it a particularly difficult problem to solve, especially when one wishes to achieve real time processing. A human being has a great ability to analyze images. He can extract the information about it and focus only on areas of interest (the phenomenon of attention). Thereafter he can detect faces in an extremely reliable way.…

Boosting (machine learning)business.industryComputer scienceReal-time computingDetector02 engineering and technologyContent-based image retrievalFacial recognition systemObject detection020202 computer hardware & architecture[INFO.INFO-ES] Computer Science [cs]/Embedded Systems0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingComputer vision[INFO.INFO-ES]Computer Science [cs]/Embedded SystemsArtificial intelligence[ INFO.INFO-ES ] Computer Science [cs]/Embedded SystemsbusinessLinear combinationFace detectionImplementation
researchProduct

Scaling Up a Metric Learning Algorithm for Image Recognition and Representation

2008

Maximally Collapsing Metric Learning is a recently proposed algorithm to estimate a metric matrix from labelled data. The purpose of this work is to extend this approach by considering a set of landmark points which can in principle reduce the cost per iteration in one order of magnitude. The proposal is in fact a generalized version of the original algorithm that can be applied to larger amounts of higher dimensional data. Exhaustive experimentation shows that very similar behavior at a lower cost is obtained for a wide range of the number of landmark points used.

Clustering high-dimensional dataSet (abstract data type)Range (mathematics)LandmarkMetric (mathematics)Landmark pointRepresentation (mathematics)AlgorithmFacial recognition systemMathematics
researchProduct

Selective attention to facial identity and emotion in children

2008

Three age groups of participants (6–8 years, 9–11 years, adults) performed two tasks: A face recognition task and a Garner task. In the face recognition task, the participants were presented with 20 faces and then had to recognize them among 20 new faces. In the Garner tasks, the participants had to sort, as fast as possible, the photographs of two persons expressing two emotions by taking into account only one of the two dimensions (identity or emotion). When the sorting task was on one dimension, the other dimension was varied either in a correlated, a constant or an orthogonal way in distinct subsessions. The results indicated an increase in face recognition abilities. They also showed a…

Cognitive Neurosciencemedia_common.quotation_subjectIdentity (social science)Face (sociological concept)Experimental and Cognitive PsychologyFacial recognition system050105 experimental psychologyDevelopmental psychologyTask (project management)03 medical and health sciences0302 clinical medicineArts and Humanities (miscellaneous)Perceptionsort0501 psychology and cognitive sciences10. No inequalityComputingMilieux_MISCELLANEOUSmedia_commonFacial expression[SCCO.NEUR]Cognitive science/Neuroscience05 social sciencesCognition[ SCCO.NEUR ] Cognitive science/Neuroscience[SCCO.PSYC]Cognitive science/PsychologyPsychology030217 neurology & neurosurgery
researchProduct