Search results for "force microscopy"
showing 10 items of 247 documents
Tribological Aspects of In Situ Manipulation of Nanostructures Inside Scanning Electron Microscope
2014
This chapter is dedicated to manipulation of nanostructures inside a scanning electron (SEM) microscope employed for real-time tribological measurements. Different approaches to force registration and calculation of static and kinetic friction are described. Application of the considered methodology to Au and Ag nanoparticles, as well as ZnO and CuO nanowires, is demonstrated. Advantages and limitations of the methodology in comparison to traditional AFM-based manipulation techniques are discussed.
In-Situ atomic force microscopic observation of ion beam bombarded plant cell envelopes
2007
Abstract A program in ion beam bioengineering has been established at Chiang Mai University (CMU), Thailand, and ion beam induced transfer of plasmid DNA molecules into bacterial cells (Escherichia coli) has been demonstrated. However, a good understanding of the fundamental physical processes involved is lacking. In parallel work, onion skin cells have been bombarded with Ar+ ions at energy 25 keV and fluence1–2 × 1015 ions/cm2, revealing the formation of microcrater-like structures on the cell wall that could serve as channels for the transfer of large macromolecules into the cell interior. An in-situ atomic force microscope (AFM) system has been designed and installed in the CMU bio-impl…
Force interactions and adhesion of gold contacts using a combined atomic force microscope and transmission electron microscope
2002
Force interactions and adhesion of gold contacts using a combined atomic force microscope and transmission electron microscope
Correlative atomic force and confocal fluorescence microscopy: single molecule imaging and force induced spectral shifts (Conference Presentation)
2016
A grand challenge in nanoscience is to correlate structure or morphology of individual nano-sized objects with their photo-physical properties. An early example have been measurements of the emission spectra and polarization of single semiconductor quantum dots as well as their crystallographic structure by a combination of confocal fluorescence microscopy and transmission electron microscopy.[1] Recently, the simultaneous use of confocal fluorescence and atomic force microscopy (AFM) has allowed for correlating the morphology/conformation of individual nanoparticle oligomers or molecules with their photo-physics.[2, 3] In particular, we have employed the tip of an AFM cantilever to apply c…
Micro-Raman characterization of graphene grown on SiC(000-1)
2014
Graphene (Gr) was grown on the C face of 4H-SiC under optimized conditions (high annealing temperatures ranging from 1850 to 1950°C in Ar ambient at 900 mbar) in order to achieve few layers of Gr coverage. Several microscopy techniques, including optical microscopy (OM), ?Raman spectroscopy, atomic force microscopy (AFM) and atomic resolution scanning transmission electron microscopy (STEM) have been used to extensively characterize the lateral uniformity of the as-grown layers at different temperatures. ?Raman analysis provided information on the variation of the number of layers, of the stacking-type, doping and strain.
Unraveling the LiNbO3 X-cut surface by atomic force microscopy and density functional theory
2014
The ${\text{LiNbO}}_{3}$(2$\overline{1}\overline{1}0$) surface, commonly referred to as X-cut, is investigated by means of atomic force microscopy and first-principles calculations. Atomically resolved atomic force microscopy images show geometrical patterns not compatible with truncated bulk terminations. Fast Fourier transformation of the real-space images shows an oblique surface unit cell with lattice parameters of $a=0.75\ifmmode\pm\else\textpm\fi{}0.02$ nm, $b=0.54\ifmmode\pm\else\textpm\fi{}0.02$ nm, and $\ensuremath{\alpha}=94.{8}^{\ensuremath{\circ}}$. Comparing these experimental results with the theoretical models of stable surface terminations provides clear evidence for the for…
Single-molecule switching with non-contact atomic force microscopy
2011
We report upon controlled switching of a single 3,4,9,10-perylene tetracarboxylic diimide derivative molecule on a rutile TiO(2)(110) surface using a non-contact atomic force microscope at room temperature. After submonolayer deposition, the molecules adsorb tilted on the bridging oxygen row. Individual molecules can be manipulated by the atomic force microscope tip in a well-controlled manner. The molecules are switched from one side of the row to the other using a simple approach, taking benefit of the sample tilt and the topography of the titania substrate. From density functional theory investigations we obtain the adsorption energies of different positions of the molecule. These adsorp…
Three-dimensional atomic force microscopy mapping at the solid-liquid interface with fast and flexible data acquisition
2016
We present the implementation of a three-dimensional mapping routine for probing solid-liquid interfaces using frequency modulation atomic force microscopy. Our implementation enables fast and flexible data acquisition of up to 20 channels simultaneously. The acquired data can be directly synchronized with commercial atomic force microscope controllers, making our routine easily extendable for related techniques that require additional data channels, e.g., Kelvin probe force microscopy. Moreover, the closest approach of the tip to the sample is limited by a user-defined threshold, providing the possibility to prevent potential damage to the tip. The performance of our setup is demonstrated …
Assessment of Polarity in GaN Self-Assembled Nanowires by Electrical Force Microscopy
2015
In this work, we demonstrate the capabilities of atomic force microscopies (AFMs) for the nondestructive determination of the polarity of GaN nanowires (NWs). Three complementary AFMs are analyzed here: Kelvin probe force microscopy (KPFM), light-assisted KPFM, and piezo-force microscopy (PFM). These techniques allow us to assess the polarity of individual NWs over an area of tens of μm(2) and provide statistics on the polarity of the ensemble with an accuracy hardly reachable by other methods. The precise quantitative analysis of the tip-sample interaction by multidimensional spectroscopic measurements, combined with advanced data analysis, has allowed the separate characterization of elec…
FRACTAL STRUCTURES IN SINGLE CRYSTALS OF FERROELECTRIC LITHIUM NIOBATE GROWN UNDER STRONGLY UNSTABLE CONDITIONS
2009
Atomic force microscopy studies of lithium niobate single crystals containing heterogeneously distributed lanthanide (Gd) admixture and a regular domain structure of 100 nm to 1 μm steps obtained under conditions of severe thermal instability have revealed fractal structures of the size of 10 to 100 nm within regions of the regular domain structures. A super-structure of clustered defects with 1–2 nm steps explaining results of Raman spectra analysis is supposed to exist in the cation sub-lattice and formation of periodic fractal structures of the size of ∼1 nm–100 μm is suggested to take place in lithium niobate single crystals containing lanthanide admixture.