Search results for "funktionaalianalyysi"
showing 10 items of 41 documents
Isometric embeddings of snowflakes into finite-dimensional Banach spaces
2016
We consider a general notion of snowflake of a metric space by composing the distance by a nontrivial concave function. We prove that a snowflake of a metric space $X$ isometrically embeds into some finite-dimensional normed space if and only if $X$ is finite. In the case of power functions we give a uniform bound on the cardinality of $X$ depending only on the power exponent and the dimension of the vector space.
Uniqueness and reconstruction for the fractional Calder\'on problem with a single measurement
2020
We show global uniqueness in the fractional Calder\'on problem with a single measurement and with data on arbitrary, possibly disjoint subsets of the exterior. The previous work \cite{GhoshSaloUhlmann} considered the case of infinitely many measurements. The method is again based on the strong uniqueness properties for the fractional equation, this time combined with a unique continuation principle from sets of measure zero. We also give a constructive procedure for determining an unknown potential from a single exterior measurement, based on constructive versions of the unique continuation result that involve different regularization schemes.
Radó-Kneser-Choquet Theorem for simply connected domains (p-harmonic setting)
2018
A remarkable result known as Rad´o-Kneser-Choquet theorem asserts that the harmonic extension of a homeomorphism of the boundary of a Jordan domain ⌦ ⇢ R2 onto the boundary of a convex domain Q ⇢ R2 takes ⌦ di↵eomorphically onto Q . Numerous extensions of this result for linear and nonlinear elliptic PDEs are known, but only when ⌦ is a Jordan domain or, if not, under additional assumptions on the boundary map. On the other hand, the newly developed theory of Sobolev mappings between Euclidean domains and Riemannian manifolds demands to extend this theorem to the setting on simply connected domains. This is the primary goal of our article. The class of the p -harmonic equations is wide enou…
Maximal function estimates and self-improvement results for Poincaré inequalities
2018
Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces. peerReviewed
Removable singularities for div v=f in weighted Lebesgue spaces
2018
International audience; Let $w\in L^1_{loc}(\R^n)$ be apositive weight. Assuming that a doubling condition and an $L^1$ Poincar\'e inequality on balls for the measure $w(x)dx$, as well as a growth condition on $w$, we prove that the compact subsets of $\R^n$ which are removable for the distributional divergence in $L^{\infty}_{1/w}$ are exactly those with vanishing weighted Hausdorff measure. We also give such a characterization for $L^p_{1/w}$, $1<p<+\infty$, in terms of capacity. This generalizes results due to Phuc and Torres, Silhavy and the first author.
Loomis-Whitney inequalities in Heisenberg groups
2021
This note concerns Loomis-Whitney inequalities in Heisenberg groups $\mathbb{H}^n$: $$|K| \lesssim \prod_{j=1}^{2n}|\pi_j(K)|^{\frac{n+1}{n(2n+1)}}, \qquad K \subset \mathbb{H}^n.$$ Here $\pi_{j}$, $j=1,\ldots,2n$, are the vertical Heisenberg projections to the hyperplanes $\{x_j=0\}$, respectively, and $|\cdot|$ refers to a natural Haar measure on either $\mathbb{H}^n$, or one of the hyperplanes. The Loomis-Whitney inequality in the first Heisenberg group $\mathbb{H}^1$ is a direct consequence of known $L^p$ improving properties of the standard Radon transform in $\mathbb{R}^2$. In this note, we show how the Loomis-Whitney inequalities in higher dimensional Heisenberg groups can be deduced…
X-ray Tomography of One-forms with Partial Data
2021
If the integrals of a one-form over all lines meeting a small open set vanish and the form is closed in this set, then the one-form is exact in the whole Euclidean space. We obtain a unique continuation result for the normal operator of the X-ray transform of one-forms, and this leads to one of our two proofs of the partial data result. Our proofs apply to compactly supported covector-valued distributions.
Approximation by mappings with singular Hessian minors
2018
Let $\Omega\subset\mathbb R^n$ be a Lipschitz domain. Given $1\leq p<k\leq n$ and any $u\in W^{2,p}(\Omega)$ belonging to the little H\"older class $c^{1,\alpha}$, we construct a sequence $u_j$ in the same space with $\operatorname{rank}D^2u_j<k$ almost everywhere such that $u_j\to u$ in $C^{1,\alpha}$ and weakly in $W^{2,p}$. This result is in strong contrast with known regularity behavior of functions in $W^{2,p}$, $p\geq k$, satisfying the same rank inequality.
Infinitesimal Hilbertianity of Weighted Riemannian Manifolds
2018
AbstractThe main result of this paper is the following: anyweightedRiemannian manifold$(M,g,\unicode[STIX]{x1D707})$,i.e., a Riemannian manifold$(M,g)$endowed with a generic non-negative Radon measure$\unicode[STIX]{x1D707}$, isinfinitesimally Hilbertian, which means that its associated Sobolev space$W^{1,2}(M,g,\unicode[STIX]{x1D707})$is a Hilbert space.We actually prove a stronger result: the abstract tangent module (à la Gigli) associated with any weighted reversible Finsler manifold$(M,F,\unicode[STIX]{x1D707})$can be isometrically embedded into the space of all measurable sections of the tangent bundle of$M$that are$2$-integrable with respect to$\unicode[STIX]{x1D707}$.By following the…
Universal infinitesimal Hilbertianity of sub-Riemannian manifolds
2019
We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations into the space of square-integrable sections of the horizontal bundle, which we obtain on all weighted sub-Finsler manifolds. As an intermediate tool, of independent interest, we show that any sub-Finsler distance can be monotonically approximated from below by Finsler ones. All the results are obtained in the general setting of possibly rank-varying structures.