Search results for "funktioteoria"

showing 10 items of 39 documents

Duality of moduli in regular toroidal metric spaces

2020

We generalize a result of Freedman and He [4, Theorem 2.5], concerning the duality of moduli and capacities in solid tori, to sufficiently regular metric spaces. This is a continuation of the work of the author and Rajala [12] on the corresponding duality in condensers. peerReviewed

30L10 30C65 28A75 51F99Pure mathematicsmetric spacesToroidDuality (optimization)torusMetric Geometry (math.MG)TorusArticlesmetriset avaruudetModulifunktioteoriaMetric spaceContinuationMathematics - Metric GeometrymodulusFOS: MathematicsdualitymittateoriageometriaMathematics::Symplectic GeometryMathematicsAnnales Fennici Mathematici
researchProduct

Mappings of finite distortion : size of the branch set

2018

Abstract We study the branch set of a mapping between subsets of ℝ n {\mathbb{R}^{n}} , i.e., the set where a given mapping is not defining a local homeomorphism. We construct several sharp examples showing that the branch set or its image can have positive measure.

Applied Mathematics010102 general mathematicsbranch setsTopology01 natural sciencesSet (abstract data type)funktioteoriamappings of finite distortionDistortion0103 physical sciences010307 mathematical physics0101 mathematicsAnalysisGeometry and topologyMathematics
researchProduct

A note on topological dimension, Hausdorff measure, and rectifiability

2020

The purpose of this note is to record a consequence, for general metric spaces, of a recent result of David Bate. We prove the following fact: Let $X$ be a compact metric space of topological dimension $n$. Suppose that the $n$-dimensional Hausdorff measure of $X$, $\mathcal H^n(X)$, is finite. Suppose further that the lower n-density of the measure $\mathcal H^n$ is positive, $\mathcal H^n$-almost everywhere in $X$. Then $X$ contains an $n$-rectifiable subset of positive $\mathcal H^n$-measure. Moreover, the assumption on the lower density is unnecessary if one uses recently announced results of Cs\"ornyei-Jones.

Applied MathematicsGeneral Mathematics010102 general mathematicsMetric Geometry (math.MG)01 natural sciencesMeasure (mathematics)funktioteoriaCombinatoricsMetric spacesymbols.namesakeCompact spaceMathematics - Metric GeometryMathematics - Classical Analysis and ODEs0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicssymbolsHausdorff measuremittateoria010307 mathematical physics0101 mathematicsLebesgue covering dimensionMathematicsProceedings of the American Mathematical Society
researchProduct

Uniformization with infinitesimally metric measures

2019

We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces $X$ homeomorphic to $\mathbb R^2$. Given a measure $\mu$ on such a space, we introduce $\mu$-quasiconformal maps $f:X \to \mathbb R^2$, whose definition involves deforming lengths of curves by $\mu$. We show that if $\mu$ is an infinitesimally metric measure, i.e., it satisfies an infinitesimal version of the metric doubling measure condition of David and Semmes, then such a $\mu$-quasiconformal map exists. We apply this result to give a characterization of the metric spaces admitting an infinitesimally quasisymmetric parametrization.

Characterization (mathematics)Space (mathematics)conformal modulus01 natural sciencesMeasure (mathematics)funktioteoriaCombinatoricsMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsComplex Variables (math.CV)MathematicsMathematics - Complex VariablesMathematics::Complex Variables010102 general mathematicsquasiconformal mappingMetric Geometry (math.MG)metriset avaruudetmetric doubling measureMetric spaceDifferential geometryUniformization theoremMetric (mathematics)quasisymmetric mapping30L10 (Primary) 30C65 28A75 51F99 (Secondary)mittateoria010307 mathematical physicsGeometry and TopologyUniformization (set theory)
researchProduct

Radó-Kneser-Choquet Theorem for simply connected domains (p-harmonic setting)

2018

A remarkable result known as Rad´o-Kneser-Choquet theorem asserts that the harmonic extension of a homeomorphism of the boundary of a Jordan domain ⌦ ⇢ R2 onto the boundary of a convex domain Q ⇢ R2 takes ⌦ di↵eomorphically onto Q . Numerous extensions of this result for linear and nonlinear elliptic PDEs are known, but only when ⌦ is a Jordan domain or, if not, under additional assumptions on the boundary map. On the other hand, the newly developed theory of Sobolev mappings between Euclidean domains and Riemannian manifolds demands to extend this theorem to the setting on simply connected domains. This is the primary goal of our article. The class of the p -harmonic equations is wide enou…

Discrete mathematicsApplied MathematicsGeneral Mathematics010102 general mathematicsta111Semi-locally simply connectedHarmonic (mathematics)01 natural sciences010101 applied mathematicsfunktioteoriap-harmonic equationSimply connected spaceharmonic mappingsmonotone mappings0101 mathematicsCauchy's integral theoremfunktionaalianalyysiSimply connected at infinityMathematicsTransactions of the American Mathematical Society
researchProduct

A new Cartan-type property and strict quasicoverings when p = 1 in metric spaces

2018

In a complete metric space that is equipped with a doubling measure and supports a Poincar\'e inequality, we prove a new Cartan-type property for the fine topology in the case $p=1$. Then we use this property to prove the existence of $1$-finely open \emph{strict subsets} and \emph{strict quasicoverings} of $1$-finely open sets. As an application, we study fine Newton-Sobolev spaces in the case $p=1$, that is, Newton-Sobolev spaces defined on $1$-finely open sets.

Discrete mathematicsfine Newton–Sobolev spaceProperty (philosophy)General Mathematicsta111010102 general mathematicsOpen setfine topologystrict quasicoveringType (model theory)function of bounded variationmetriset avaruudet01 natural sciencesMeasure (mathematics)Complete metric spaceCartan propertyfunktioteoria010101 applied mathematicsMetric spacemetric measure spacepotentiaaliteoria0101 mathematicsFine topologyMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Reciprocal lower bound on modulus of curve families in metric surfaces

2019

We prove that any metric space $X$ homeomorphic to $\mathbb{R}^2$ with locally finite Hausdorff 2-measure satisfies a reciprocal lower bound on modulus of curve families associated to a quadrilateral. More precisely, let $Q \subset X$ be a topological quadrilateral with boundary edges (in cyclic order) denoted by $\zeta_1, \zeta_2, \zeta_3, \zeta_4$ and let $\Gamma(\zeta_i, \zeta_j; Q)$ denote the family of curves in $Q$ connecting $\zeta_i$ and $\zeta_j$; then $\text{mod} \Gamma(\zeta_1, \zeta_3; Q) \text{mod} \Gamma(\zeta_2, \zeta_4; Q) \geq 1/\kappa$ for $\kappa = 2000^2\cdot (4/\pi)^2$. This answers a question concerning minimal hypotheses under which a metric space admits a quasiconfor…

General Mathematics010102 general mathematicsquasiconformal mappingModulusMetric Geometry (math.MG)uniformizationconformal modulusCoarea inequalitymetriset avaruudet01 natural sciencesUpper and lower boundsfunktioteoriaCombinatoricsMathematics - Metric Geometry30L100103 physical sciencesMetric (mathematics)FOS: Mathematics010307 mathematical physics0101 mathematicsReciprocalMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Accessible parts of boundary for simply connected domains

2018

For a bounded simply connected domain $\Omega\subset\mathbb{R}^2$, any point $z\in\Omega$ and any $0<\alpha<1$, we give a lower bound for the $\alpha$-dimensional Hausdorff content of the set of points in the boundary of $\Omega$ which can be joined to $z$ by a John curve with a suitable John constant depending only on $\alpha$, in terms of the distance of $z$ to $\partial\Omega$. In fact this set in the boundary contains the intersection $\partial\Omega_z\cap\partial\Omega$ of the boundary of a John sub-domain $\Omega_z$ of $\Omega$, centered at $z$, with the boundary of $\Omega$. This may be understood as a quantitative version of a result of Makarov. This estimate is then applied to obta…

General MathematicsBoundary (topology)30C35 26D1501 natural sciencesUpper and lower boundsOmegaDomain (mathematical analysis)CombinatoricsfunktioteoriaHardy inequality0103 physical sciencesSimply connected spaceClassical Analysis and ODEs (math.CA)FOS: MathematicsComplex Variables (math.CV)0101 mathematicsepäyhtälötMathematicsPointwiseMathematics - Complex VariablesApplied Mathematics010102 general mathematicsta111simply connected domainsMathematics - Classical Analysis and ODEsBounded functionContent (measure theory)010307 mathematical physicsJohn domainsProceedings of the American Mathematical Society
researchProduct

Mappings of Finite Distortion : Compactness of the Branch Set

2017

We show that an entire branched cover of finite distortion cannot have a compact branch set if its distortion satisfies a certain asymptotic growth condition. We furthermore show that this bound is strict by constructing an entire, continuous, open and discrete mapping of finite distortion which is piecewise smooth, has a branch set homeomorphic to an (n - 2)-dimensional torus and distortion arbitrarily close to the asymptotic bound. Peer reviewed

General Mathematicsbranch setsCOVERS01 natural sciencesfunktioteoriaSet (abstract data type)Mathematics - Geometric TopologyDimension (vector space)DistortionFOS: Mathematics111 Mathematicsfinite distortionComplex Variables (math.CV)topologia0101 mathematicsDIMENSIONMathematicsPartial differential equationMathematics - Complex Variables010102 general mathematicsMathematical analysisGeometric Topology (math.GT)TorusCompact spaceCover (topology)57M12 30C65PiecewiseLIGHT OPEN MAPSmonistotAnalysis
researchProduct

Mappings of exponentially integrable distortion: Decay of the Jacobian

2018

We establish an integrability result on the reciprocal of the Jacobian determinant for a mapping of exponentially integrable distortion and thus answer a question raised by S. Hencl and P. Koskela.

Integrable systemApplied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysista11102 engineering and technology021001 nanoscience & nanotechnologyintegrability01 natural sciencesfunktioteoriasymbols.namesakeExponential growthmappings of finite distortionDistortionJacobian matrix and determinantsymbols0101 mathematicskompleksifunktiot0210 nano-technologyJacobianMathematicsProceedings of the American Mathematical Society
researchProduct