Search results for "funktioteoria"
showing 10 items of 39 documents
Duality of moduli in regular toroidal metric spaces
2020
We generalize a result of Freedman and He [4, Theorem 2.5], concerning the duality of moduli and capacities in solid tori, to sufficiently regular metric spaces. This is a continuation of the work of the author and Rajala [12] on the corresponding duality in condensers. peerReviewed
Mappings of finite distortion : size of the branch set
2018
Abstract We study the branch set of a mapping between subsets of ℝ n {\mathbb{R}^{n}} , i.e., the set where a given mapping is not defining a local homeomorphism. We construct several sharp examples showing that the branch set or its image can have positive measure.
A note on topological dimension, Hausdorff measure, and rectifiability
2020
The purpose of this note is to record a consequence, for general metric spaces, of a recent result of David Bate. We prove the following fact: Let $X$ be a compact metric space of topological dimension $n$. Suppose that the $n$-dimensional Hausdorff measure of $X$, $\mathcal H^n(X)$, is finite. Suppose further that the lower n-density of the measure $\mathcal H^n$ is positive, $\mathcal H^n$-almost everywhere in $X$. Then $X$ contains an $n$-rectifiable subset of positive $\mathcal H^n$-measure. Moreover, the assumption on the lower density is unnecessary if one uses recently announced results of Cs\"ornyei-Jones.
Uniformization with infinitesimally metric measures
2019
We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces $X$ homeomorphic to $\mathbb R^2$. Given a measure $\mu$ on such a space, we introduce $\mu$-quasiconformal maps $f:X \to \mathbb R^2$, whose definition involves deforming lengths of curves by $\mu$. We show that if $\mu$ is an infinitesimally metric measure, i.e., it satisfies an infinitesimal version of the metric doubling measure condition of David and Semmes, then such a $\mu$-quasiconformal map exists. We apply this result to give a characterization of the metric spaces admitting an infinitesimally quasisymmetric parametrization.
Radó-Kneser-Choquet Theorem for simply connected domains (p-harmonic setting)
2018
A remarkable result known as Rad´o-Kneser-Choquet theorem asserts that the harmonic extension of a homeomorphism of the boundary of a Jordan domain ⌦ ⇢ R2 onto the boundary of a convex domain Q ⇢ R2 takes ⌦ di↵eomorphically onto Q . Numerous extensions of this result for linear and nonlinear elliptic PDEs are known, but only when ⌦ is a Jordan domain or, if not, under additional assumptions on the boundary map. On the other hand, the newly developed theory of Sobolev mappings between Euclidean domains and Riemannian manifolds demands to extend this theorem to the setting on simply connected domains. This is the primary goal of our article. The class of the p -harmonic equations is wide enou…
A new Cartan-type property and strict quasicoverings when p = 1 in metric spaces
2018
In a complete metric space that is equipped with a doubling measure and supports a Poincar\'e inequality, we prove a new Cartan-type property for the fine topology in the case $p=1$. Then we use this property to prove the existence of $1$-finely open \emph{strict subsets} and \emph{strict quasicoverings} of $1$-finely open sets. As an application, we study fine Newton-Sobolev spaces in the case $p=1$, that is, Newton-Sobolev spaces defined on $1$-finely open sets.
Reciprocal lower bound on modulus of curve families in metric surfaces
2019
We prove that any metric space $X$ homeomorphic to $\mathbb{R}^2$ with locally finite Hausdorff 2-measure satisfies a reciprocal lower bound on modulus of curve families associated to a quadrilateral. More precisely, let $Q \subset X$ be a topological quadrilateral with boundary edges (in cyclic order) denoted by $\zeta_1, \zeta_2, \zeta_3, \zeta_4$ and let $\Gamma(\zeta_i, \zeta_j; Q)$ denote the family of curves in $Q$ connecting $\zeta_i$ and $\zeta_j$; then $\text{mod} \Gamma(\zeta_1, \zeta_3; Q) \text{mod} \Gamma(\zeta_2, \zeta_4; Q) \geq 1/\kappa$ for $\kappa = 2000^2\cdot (4/\pi)^2$. This answers a question concerning minimal hypotheses under which a metric space admits a quasiconfor…
Accessible parts of boundary for simply connected domains
2018
For a bounded simply connected domain $\Omega\subset\mathbb{R}^2$, any point $z\in\Omega$ and any $0<\alpha<1$, we give a lower bound for the $\alpha$-dimensional Hausdorff content of the set of points in the boundary of $\Omega$ which can be joined to $z$ by a John curve with a suitable John constant depending only on $\alpha$, in terms of the distance of $z$ to $\partial\Omega$. In fact this set in the boundary contains the intersection $\partial\Omega_z\cap\partial\Omega$ of the boundary of a John sub-domain $\Omega_z$ of $\Omega$, centered at $z$, with the boundary of $\Omega$. This may be understood as a quantitative version of a result of Makarov. This estimate is then applied to obta…
Mappings of Finite Distortion : Compactness of the Branch Set
2017
We show that an entire branched cover of finite distortion cannot have a compact branch set if its distortion satisfies a certain asymptotic growth condition. We furthermore show that this bound is strict by constructing an entire, continuous, open and discrete mapping of finite distortion which is piecewise smooth, has a branch set homeomorphic to an (n - 2)-dimensional torus and distortion arbitrarily close to the asymptotic bound. Peer reviewed
Mappings of exponentially integrable distortion: Decay of the Jacobian
2018
We establish an integrability result on the reciprocal of the Jacobian determinant for a mapping of exponentially integrable distortion and thus answer a question raised by S. Hencl and P. Koskela.