Search results for "irradiation"

showing 10 items of 1012 documents

Irradiation effects in CaF2probed by Raman scattering

2016

The formation conditions and dynamics of Ca colloids and point defects that appear in irradiated single crystals of CaF2 were investigated by Raman spectroscopy. The intensity changes in the Raman spectra because of the presence of different concentrations of point defects and Ca colloids that emerged in CaF2 after irradiation with 2.2 GeV Au ions were used to study their distribution and stability under illumination with three laser wavelengths (473, 532 and 633 nm) at different output powers (2 to 200 mW). A damage saturation at a fluence of 6 × 1011 ion cm−2 was observed. The dependence of the spectral changes on the ion fluence can be described by a core/halo damage cross-section model.…

010302 applied physicsChemistryAnalytical chemistry02 engineering and technology021001 nanoscience & nanotechnologyLaser01 natural sciencesCrystallographic defectMolecular physicsFluencelaw.inventionIonsymbols.namesakeSwift heavy ionlaw0103 physical sciencessymbolsGeneral Materials ScienceIrradiation0210 nano-technologyRaman spectroscopySpectroscopyRaman scatteringJournal of Raman Spectroscopy
researchProduct

Design and experimental validation of a magnetic device for stem cell culture.

2020

Cell culture of bone and tendon tissues requires mechanical stimulation of the cells in order to mimic their physiological state. In the present work, a device has been conceived and developed to generate a controlled magnetic field with a homogeneous gradient in the working space. The design requirement was to maximize the magnetic flux gradient, assuring a minimum magnetizing value in a 15 mm × 15 mm working area, which highly increases the normal operating range of this sort of devices. The objective is to use the machine for two types of biological tests: magnetic irradiation of biological samples and force generation on paramagnetic particles embedded in scaffolds for cell culture. The…

010302 applied physicsElectromagnetic fieldMaterials scienceStem CellsCell Culture TechniquesExperimental validationEquipment Designequipment and supplies01 natural sciencesMagnetic flux010305 fluids & plasmasMagnetic fieldMagnetic FieldsCell cultureDental pulp stem cells0103 physical sciencesMagnetic nanoparticlesIrradiationInstrumentationhuman activitiesBiomedical engineeringThe Review of scientific instruments
researchProduct

Formation of dislocations and hardening of LiF under high-dose irradiation with 5–21 MeV 12C ions

2017

R. Zabels, I. Manika, J. Maniks, and R.Grants acknowledge the national project IMIS2, and A. Dauletbekova, M. Baizhumanov, and M. Zdorovets the Ministry of Education and Science of the Republic of Kazakhstan for the financial support.

010302 applied physicsEnergy lossMaterials sciencePhysics::Instrumentation and DetectorsAtomic force microscopyAstrophysics::High Energy Astrophysical PhenomenaPhysics::Medical Physicsmacromolecular substances02 engineering and technologyGeneral ChemistryNanoindentation021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsIsotropic etchingElastic collisionIonPhysics::Plasma Physics0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Hardening (metallurgy)General Materials ScienceIrradiationAtomic physics0210 nano-technologyApplied Physics A
researchProduct

Effects of Thermal Neutron Irradiation on a Self-Refresh DRAM

2020

International audience; In this study, static and dynamic test methods were used to define the response of a self-refresh DRAM under thermal neutron irradiation. The neutron-induced failures were investigated and characterized by event cross-sections, soft-error rate and bitmaps evaluations, leading to an identification of permanent and temporarily stuck cells, block errors, and single-bit upsets.

010302 applied physicsMaterials science010308 nuclear & particles physicsNuclear engineering01 natural sciencesNeutron temperature[SPI.TRON]Engineering Sciences [physics]/Electronics0103 physical sciences[INFO.INFO-ES]Computer Science [cs]/Embedded SystemsNeutronIrradiation[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsDramBlock (data storage)Dynamic testing2020 15th Design & Technology of Integrated Systems in Nanoscale Era (DTIS)
researchProduct

MeV-energy Xe ion-induced damage in LiF: The contribution of electronic and nuclear stopping mechanisms

2016

The contribution of electronic and nuclear damage mechanisms in the modification of structure and micromechanical properties of LiF crystals irradiated with 52, 224, and 450 MeV Xe ions at fluences 1010–1014 ions cm−2 has been studied. The ion-induced formation of dislocations and hardening in LiF at fluences above 1010 ions cm−2 has been observed. The depth profiles of nanoindentation show a joint contribution of electronic excitation and nuclear (impact) mechanisms to the ion-induced hardening. The electronic excitation mechanism dominates in the major part of the ion range while the impact mechanism prevails in a narrow zone at the end of the ion range. The efficiency of hardening produc…

010302 applied physicsMaterials science02 engineering and technologyNanoindentation021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsIon0103 physical sciencesHardening (metallurgy)SubstructureIrradiationDislocationAtomic physics0210 nano-technologyOrder of magnitudeExcitationphysica status solidi (b)
researchProduct

2020

Recent experiments have demonstrated the formation of free-standing Au monolayers by exposing the Au–Ag alloy to electron beam irradiation. Inspired by this discovery, we used semi-empirical effective medium theory simulations to investigate monolayer formation in 30 different binary metal alloys composed of late d-series metals such as Ni, Cu, Pd, Ag, Pt, and Au. In qualitative agreement with the experiment, we find that the beam energy required to dealloy Ag atoms from the Au–Ag alloy is smaller than the energy required to break the dealloyed Au monolayer. Our simulations suggest that a similar method could also be used to form Au monolayers from the Au–Cu alloy and Pt monolayers from Pt–…

010302 applied physicsMaterials scienceAlloyGeneral Physics and AstronomyBinary number02 engineering and technologyengineering.material021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsMetalElectron beam irradiationvisual_art0103 physical sciencesMonolayerengineeringvisual_art.visual_art_medium0210 nano-technologyBeam energyAIP Advances
researchProduct

A new 18 GHz room temperature electron cyclotron resonance ion source for highly charged ion beams

2020

An innovative 18 GHz HIISI (Heavy Ion Ion Source Injector) room temperature Electron Cyclotron Resonance (ECR) ion source (ECRIS) has been designed and constructed at the Department of Physics, University of Jyväskylä (JYFL), for the nuclear physics program of the JYFL Accelerator Laboratory. The primary objective of HIISI is to increase the intensities of medium charge states (M/Q ≅ 5) by a factor of 10 in comparison with the JYFL 14 GHz ECRIS and to increase the maximum usable xenon charge state from 35+ to 44+ to serve the space electronics irradiation testing program. HIISI is equipped with a refrigerated permanent magnet hexapole and a noncylindrical plasma chamber to achieve very stro…

010302 applied physicsMaterials scienceIon beamsyklotronittutkimuslaitteetHighly charged ionchemistry.chemical_elementhiukkaskiihdyttimet01 natural sciences7. Clean energyIon sourceElectron cyclotron resonance010305 fluids & plasmasIonXenonchemistry0103 physical sciencesIrradiationAtomic physicsInstrumentationBeam (structure)
researchProduct

FTIR Analysis of Electron Irradiated Single and Multilayer Si<sub>3</sub>N<sub>4</sub> Coatings

2018

Silicon nitride (Si3N4) due to its good mechanical and electrical properties is a promising material for wide range of applications, including exploitation under action of ionizing radiation. For estimating the changes of chemical bonds in silicon nitride nanolayers under action of ionizing radiation single and multi-layer silicon nitride nanolayered coatings on prepared Si subtrate were investigated by means of Fourier transform infrared spectrometry. Three main groups of signals were identified in both types of nanolayers, at 510 and 820 cm-1 and group of broad signals at 1000-1200 cm-1. Irradiation with accelerated electrons up to absorbed doses 36 MGy causes minor changes of signal inte…

010302 applied physicsMaterials scienceMechanical Engineering02 engineering and technologyElectron021001 nanoscience & nanotechnology01 natural sciencesMechanics of Materials0103 physical sciencesGeneral Materials ScienceIrradiationFourier transform infrared spectroscopy0210 nano-technologyNuclear chemistryKey Engineering Materials
researchProduct

Spin–orbit torque driven multi-level switching in He + irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy

2020

We have investigated the spin–orbit torque-driven magnetization switching in W/CoFeB/MgO Hall bars with perpendicular magnetic anisotropy. He+ ion irradiation through a mask has been used to reduce locally the effective perpendicular anisotropy at a Hall cross. Anomalous Hall effect measurements combined with Kerr microscopy indicate that the switching process is dominated by domain wall (DW) nucleation in the irradiated region followed by rapid domain propagation at a current density as low as 0.8 MA/cm2 with an assisting in-plane magnetic field. Thanks to the implemented strong pinning of the DW at the transition between the irradiated and the non-irradiated region, an intermediate Hall r…

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsNucleation02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesIonMagnetic fieldMagnetization[SPI]Engineering Sciences [physics]Domain wall (magnetism)Hall effect0103 physical sciencesIrradiation0210 nano-technologyCurrent densityComputingMilieux_MISCELLANEOUS
researchProduct

Enhancing domain wall velocity through interface intermixing in W-CoFeB-MgO films with perpendicular anisotropy

2019

We study the influence of He+ irradiation induced interface intermixing on magnetic domain wall (DW) dynamics in W-CoFeB (0.6 nm)-MgO ultrathin films, which exhibit high perpendicular magnetic anisotropy and large Dzyaloshinskii-Moriya interaction (DMI) values. Whereas the pristine films exhibit strong DW pinning, we observe a large increase in the DW velocity in the creep regime upon He+ irradiation, which is attributed to the reduction of pinning centers induced by interface intermixing. Asymmetric in-plane field-driven domain expansion experiments show that the DMI value is slightly reduced upon irradiation, and a direct relationship between DMI and interface anisotropy is demonstrated. …

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)SpintronicsMagnetic domainCondensed matter physics530 PhysicsPerpendicular magnetic anisotropy02 engineering and technology530 Physik021001 nanoscience & nanotechnology01 natural sciences[SPI]Engineering Sciences [physics]Domain wall (magnetism)Creep[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencesPerpendicular anisotropyIrradiation[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]0210 nano-technologyAnisotropyComputingMilieux_MISCELLANEOUS
researchProduct