Search results for "irradiation"

showing 10 items of 1012 documents

Creation and thermal annealing of structural defects in neutron-irradiated MgAl 2 O 4 single crystals

2018

Abstract Several novel hole-type defects (a hole localized at a regular oxygen ion near a negatively charged structural defect) have been revealed in fast neutron irradiated MgAl2O4 crystals using the EPR method. The pulse annealing of the EPR signal of these centers was compared to that of radiation induced optical absorption in the same crystals. Taking into account the determined models of V1, V2 and V22 paramagnetic centers, the tentative scenario of the thermal annealing process of neutron-induced defects (hole-type and complementary electron F-type ones) is proposed. In addition, one more paramagnetic hole center consisting of an Al|Mg as-grown antisite defect near an aluminum vacancy…

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceAnnealing (metallurgy)Astrophysics::High Energy Astrophysical Phenomenachemistry.chemical_element02 engineering and technologyElectron021001 nanoscience & nanotechnology01 natural sciencesMolecular physicslaw.inventionCondensed Matter::Materials ScienceCrystallographyParamagnetismchemistrylawAluminiumVacancy defect0103 physical sciencesNeutronIrradiation0210 nano-technologyElectron paramagnetic resonanceInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Accumulation of radiation defects and modification of micromechanical properties under MgO crystal irradiation with swift 132Xe ions

2020

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. A.A. also acknowledges support via the project GF AP05134257 of Ministry of Education and Science of the Republic of Kazakhstan .

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceOptical absorptionAnalytical chemistryDepth profile of hardeningCathodoluminescence02 engineering and technologyRadiation021001 nanoscience & nanotechnologySwift heavy ions01 natural sciencesFluenceRadiation defectsSpectral lineIonCrystalFluence dependenceIonization0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Irradiation0210 nano-technologyInstrumentationMagnesium oxideNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Shallow and deep trap levels in X-ray irradiated β-Ga2O3: Mg

2019

Abstract The results of the investigation of thermostimulated luminescence (TSL) and photoconductivity (PC) of the X-ray irradiated undoped and Mg2+ doped β-Ga2O3 single crystals are presented. Three low-temperature peaks at 116 K, 147 K and 165 K are observed on the TSL glow curves of undoped crystals. The high-temperature TSL peaks at 354 K and 385 K are dominant in Mg2+ doped crystals. The correlation between doping with Mg2+ ions and the local energy levels of the intrinsic structural defects of β-Ga2O3, which are responsible for the TSL peaks and PC, is established. The nature of TSL peaks and the appropriate photoconductivity excitation bands are discussed.

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencePhotoconductivityDopingAnalytical chemistryX-ray02 engineering and technologyActivation energy021001 nanoscience & nanotechnology01 natural sciencesIon0103 physical sciencesIrradiation0210 nano-technologyLuminescenceInstrumentationSingle crystalNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Comparison of the F-type center thermal annealing in heavy-ion and neutron irradiated Al2O3 single crystals

2018

Abstract The optical absorption and thermally stimulated luminescence of Al2O3 (sapphire) single crystals irradiated with swift heavy ions (SHI) 238U with energy 2.4 GeV is studied with the focus on the thermal annealing of the F-type centers in a wide temperature range of 400–1500 K. Its theoretical analysis allows us to obtain activation energies and pre-exponentials of the interstitial oxygen ion migration, which recombine with both types of immobile electron centers (F and F+ centers). A comparison of these kinetics parameters with literature data for a neutron-irradiated sapphire shows their similarity and thus supports the use of SHI-irradiation for modeling the neutron irradiation.

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencePhysics::Instrumentation and DetectorsAnalytical chemistry02 engineering and technologyElectronAtmospheric temperature range021001 nanoscience & nanotechnology01 natural sciencesIonCondensed Matter::Materials Science0103 physical sciencesSapphireNeutronIrradiation0210 nano-technologyAbsorption (electromagnetic radiation)LuminescenceInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Thermal annealing of radiation damage produced by swift 132Xe ions in MgO single crystals

2020

Abstract The annealing kinetics of the electron-type F+ and F color centers in highly pure MgO single crystals irradiated by 0.23-GeV 132Xe ions with fluences covering three orders of magnitude (Φ = 5 × 1011 –3.3 × 1014 ions/cm2) are studied experimentally via dependence of the optical absorption on preheating temperature. The annealing data are analyzed in terms of the diffusion-controlled bimolecular reactions between F-type centers and complementary interstitial oxygen ions. The behavior of the main kinetic parameters – the migration energies and pre-exponential factors – for different irradiation fluences is discussed and compared with that for other wide-gap binary materials from previ…

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencePhysics::Instrumentation and DetectorsMagnesiumAnnealing (metallurgy)KineticsAnalytical chemistrychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyKinetic energy01 natural sciencesIonchemistry0103 physical sciencesOxygen ionsRadiation damageIrradiation0210 nano-technologyInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Radiation resistance of nanolayered silicon nitride capacitors

2020

Abstract Single-layered and multi-layered 20–60 nm thick silicon nitride (Si3N4) dielectric nanofilms were fabricated using a low-pressure chemical vapour deposition (LPCVD) method. The X-ray photoelectron spectroscopy (XPS) confirmed less oxygen content in the multi-layered nanofilms. The capacitors with Si3N4 multilayer demonstrated a tendency to a higher breakdown voltage compared to the capacitors with Si3N4 single layer. Si3N4 nanofilms and capacitors with Si3N4 dielectric were exposed to 1 kGy dose of gamma photons. Fourier transform infrared (FTIR) spectroscopy analysis showed that no modifications of the chemical bonds of Si3N4 were present after irradiation. Also, gamma irradiation…

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencebusiness.industry02 engineering and technologyDielectricChemical vapor deposition021001 nanoscience & nanotechnology01 natural sciencesCapacitancelaw.inventionchemistry.chemical_compoundCapacitorSilicon nitridechemistrylaw0103 physical sciencesOptoelectronicsBreakdown voltageIrradiation0210 nano-technologybusinessInstrumentationRadiation resistanceNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

The peculiarities of the radiation damage accumulation kinetics in the case of defect complex formation

2020

Abstract The kinetics of radiation defect accumulation under irradiation by heavy particles is theoretically analysed under the assumption of defect complex genesis, particularly, the ones of anion and cation vacancies. The obtained analytical mathematical model and revealed peculiarities of radiation dose dependencies can be used for analysis of the experimental results for different crystalline materials for solid-state electronics and photonics.

010302 applied physicsNuclear and High Energy PhysicsMaterials sciencebusiness.industryComplex formationRadiation doseKinetics02 engineering and technologyRadiation021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesIon0103 physical sciencesRadiation damageIrradiationPhotonics0210 nano-technologybusinessInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Depth profiles of damage creation and hardening in MgO irradiated with GeV heavy ions

2019

This work has been performed within the framework of the EUROfusion Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion applications”. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

010302 applied physicsNuclear and High Energy PhysicsPhotoluminescenceMaterials scienceDislocations02 engineering and technologyNanoindentation021001 nanoscience & nanotechnologySwift heavy ions01 natural sciencesMgO crystalsNanoindentationIonCondensed Matter::Materials ScienceIndentation0103 physical sciencesHardening (metallurgy):NATURAL SCIENCES:Physics [Research Subject Categories]IrradiationComposite materialDislocation0210 nano-technologySpectroscopyInstrumentationPhotoluminescenceNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Radiation-induced defects in sapphire single crystals irradiated by a pulsed ion beam

2020

Abstract The luminescence and thermal stability of defects formed in α-Al2O3 single crystals after powerful (300 keV) pulsed irradiation with C+/H+ ion beam were investigated. It was found by measuring of optical density, photoluminescence, and pulsed cathodoluminescence that ion irradiation induces both single F-, F+-centers and F2-type aggregate centers. An intense thermoluminescence band with a complex shape was observed in the broad temperature range of 350–700 K, its intensity decreases with increasing of the energy density of the ion beam. The thermal stability of the F-type defects produced in α-Al2O3 after irradiation with a pulsed ion beam is comparable to that in neutron-irradiate…

010302 applied physicsNuclear and High Energy PhysicsPhotoluminescenceMaterials scienceIon beamAnalytical chemistryCathodoluminescence02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnology01 natural sciencesThermoluminescenceIon0103 physical sciencesIrradiation0210 nano-technologyLuminescenceInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Dielectric properties of potassium–sodium niobate ceramics at low frequencies

2016

ABSTRACTA study of the effects of ageing history on the electrical properties of lead-free ferroelectric ceramics of (K0.5Na0.5)(Nb1−xSbx)O3 + 0.5 mol% MnO2 and (K0.5Na0.5)(Nb1−xTax)O3 + 0.5 mol%MnO2 for x = 0.05 is reported. The samples after storage at a constant temperature have been subject to infra-low-frequency electric field and radiation. Differences of the photoelectric response between the two examined compounds were found and the restoration of polarisation in the aged ceramic materials by cycles of applied field is discussed.

010302 applied physicsPhotocurrentMaterials sciencebusiness.industryFerroelectric ceramicsAnalytical chemistry02 engineering and technologyDielectricPhotoelectric effect021001 nanoscience & nanotechnology01 natural sciencesFerroelectricityOpticsvisual_artElectric field0103 physical sciencesvisual_art.visual_art_mediumGeneral Materials ScienceIrradiationCeramic0210 nano-technologybusinessInstrumentationPhase Transitions
researchProduct