Search results for "mRNA"

showing 10 items of 164 documents

Induction of the peroxisome proliferator activated receptor by fenofibrate in rat liver

1992

AbstractThe process of peroxisome proliferation in rodent liver by hypolipidemic compounds and related substances has recently been shown to be receptor-madiated. In the present study, we have examined the effect of oral administration of the strong peroxisome proliferator fenofibrate on the hepatic expression level of the peroxisome proliferator activated receptor (PPAR) in rats. Immunoblots of rat liver cytosols and nuclear extracs using antibodies raised against recombinant PPAR/β-galactosidase fusion proteins revealed a pronounced increase in the amount of PPAR protein in response to fenofibrate treatment. This induction could also be confirmed at the level or RNA by Northern blotting. …

Male1303 BiochemistryReceptors Cytoplasmic and Nuclear10050 Institute of Pharmacology and ToxicologyPeroxisome proliferator-activated receptorPPARMicrobodiesPolymerase Chain ReactionBiochemistryPPAR agonist1307 Cell BiologyMiceCytosol1315 Structural BiologyFenofibrateStructural Biologychemistry.chemical_classificationMice Inbred BALB CFenofibrateOligodeoxyribonucleotidesPeroxisome proliferator-activated receptor alphaFusion proteinmedicine.drugmedicine.medical_specialtyPeroxisome proliferator-activated receptor gammamRNAMolecular Sequence DataBiophysicsPeroxisome ProliferationReceptors Cell Surface610 Medicine & healthBiology1311 GeneticsInternal medicine1312 Molecular BiologyGeneticsmedicineAnimalsNorthern blotMolecular BiologyAntibodyHypolipidemic compoundCell NucleusMessenger RNABase SequenceImmune SeraCell BiologyBlotting NorthernRatsMice Inbred C57BLEndocrinologychemistry570 Life sciences; biologyTranscription Factors1304 BiophysicsFEBS Letters
researchProduct

Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair

2015

Reactive oxygen and nitrogen species (e.g. H2O2, nitric oxide) confer redox regulation of essential cellular signaling pathways such as cell differentiation, proliferation, migration and apoptosis. In addition, classical regulation of gene expression or activity, including gene transcription to RNA followed by translation to the protein level, by transcription factors (e.g. NF-κB, HIF-1α) and mRNA binding proteins (e.g. GAPDH, HuR) is subject to redox regulation. This review will give an update of recent discoveries in this field, and specifically highlight the impact of reactive oxygen and nitrogen species on DNA repair systems that contribute to genomic stability. Emphasis will be placed …

Genome instabilityRedox signalingRNA UntranslatedEpigenetic regulation of neurogenesisDNA RepairHuR mRNA-binding protein in the 3′-untranslated regionClinical BiochemistryHDAC histone deacetylaseReview ArticleAP-1 activator protein 1BiochemistryApe-1 apurinic/apyrimidinic endonuclease 1GPx-1 glutathione peroxidase-1Epigenesis GeneticHistonesTrx thioredoxinPHD prolylhydroxylaseBER base excision repairlcsh:QH301-705.5HO-1 heme oxygenase-1EpigenomicsGeneticsRegulation of gene expressionNox member of the NADPH oxidase familylcsh:R5-920JmjC Jumonji C domain-containing histone demethylasesHIF-1α hypoxia inducible factor-1α5-hmC 5-hydroxymethylcytosineddc:Cell biologyMMP matrix metalloproteinaseGrx glutaredoxinGAPDH glyceraldehyde-3-phosphate dehydrogenaseNrf2 nuclear factor erythroid related factor 2DNA methylationEpigeneticslcsh:Medicine (General)Oxidation-ReductionSignal Transduction5-mC 5-methylcytosineDNA repairDNA damageNF-κB nuclear factor-κBBiologyGenomic InstabilityRNS reactive nitrogen speciesROS reactive oxygen speciesNER nucleotide excision repairSOD superoxide dismutaseOxyR transcription factor (hydrogen peroxide-inducible genes activator)HumansEpigeneticsOrganic ChemistryPETN pentaerithrityl tetranitrateGene regulationOxidative StressDNMT DNA methyltransferaseGene Expression Regulationlcsh:Biology (General)AREs AU-rich elementsHAT histone acetyltransferaseKeap1 kelch-like ECH-associated protein 1BiomarkersCOPD chronic obstructive pulmonary disorderDNA DamageRedox Biology
researchProduct

Alternative Polyadenylation Events Contribute to the Induction of NF-ATc in Effector T Cells

1999

Abstract The transcription factor NF-ATc is synthesized in three prominent isoforms. These differ in the length of their C terminal peptides and mode of synthesis. Due to a switch from the use of a 3′ polyA site to a more proximal polyA site, NF-ATc expression switches from the synthesis of the two longer isoforms in naive T cells to that of short isoform A in T effector cells. The relative low binding affinity of cleavage stimulation factor CstF-64 to the proximal polyA site seems to contribute to its neglect in naive T cells. These alternative polyadenylation events ensure the rapid accumulation of high concentrations of NF-ATc necessary to exceed critical threshold levels of NF-ATc for g…

Gene isoformPolyadenylationImmunologyMolecular Sequence DataGene inductionBiologyLymphocyte ActivationTransfectionT-Lymphocytes RegulatoryJurkat CellsMiceGenes ReporterCritical thresholdTumor Cells CulturedImmunology and AllergyAnimalsHumansAmino Acid SequenceCloning MolecularLuciferasesTranscription factormRNA Cleavage and Polyadenylation FactorsCleavage stimulation factorBase SequenceNFATC Transcription FactorsEffectorNuclear ProteinsRNA-Binding ProteinsMolecular biologyDNA-Binding ProteinsInfectious DiseasesPoly ATranscription FactorsImmunity
researchProduct

Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae.

2009

Hyperosmotic stress yields reprogramming of gene expression in Saccharomyces cerevisiae cells. Most of this response is orchestrated by Hog1, a stress-activated, mitogen-activated protein kinase (MAPK) homologous to human p38. We investigated, on a genomic scale, the contribution of changes in transcription rates and mRNA stabilities to the modulation of mRNA amounts during the response to osmotic stress in wild-type and hog1 mutant cells. Mild osmotic shock induces a broad mRNA destabilization; however, osmo-mRNAs are up-regulated by increasing both transcription rates and mRNA half-lives. In contrast, mild or severe osmotic stress in hog1 mutants, or severe osmotic stress in wild-type cel…

BioquímicaMessenger RNASaccharomyces cerevisiae ProteinsTranscription GeneticOsmotic shockMRNA destabilizationRNA Stabilityp38 mitogen-activated protein kinasesSaccharomyces cerevisiaeMRNA stabilizationSaccharomyces cerevisiaeBiologybiology.organism_classificationMolecular biologyArticleGenètica molecularCell biologyOsmotic PressureGene Expression Regulation FungalGene expressionOsmotic pressureRNA MessengerMitogen-Activated Protein KinasesMolecular Biology
researchProduct

A Systematic Study of Dysregulated MicroRNA in Type 2 Diabetes Mellitus

2017

MicroRNAs (miRNAs) are small noncoding RNAs that modulate the cellular transcriptome at the post-transcriptional level. miRNA plays important roles in different disease manifestation, including type 2 diabetes mellitus (T2DM). Many studies have characterized the changes of miRNAs in T2DM, a complex systematic disease; however, few studies have integrated these findings and explored the functional effects of the dysregulated miRNAs identified. To investigate the involvement of miRNAs in T2DM, we obtained and analyzed all relevant studies published prior to 18 October 2016 from various literature databases. From 59 independent studies that met the inclusion criteria, we identified 158 dysregu…

0301 basic medicineSystematic surveytype 2 diabetes mellitussystematic study030209 endocrinology & metabolismDiseaseBioinformaticsCatalysisArticleInorganic ChemistryTranscriptomelcsh:Chemistry03 medical and health sciences0302 clinical medicineDiabetes mellitusmiRNA-mRNA interaction networkmicroRNAmedicineHumansGene Regulatory NetworksRNA MessengerPhysical and Theoretical Chemistry10. No inequalityMolecular Biologylcsh:QH301-705.5SpectroscopyAdipocytokine Signaling PathwaymicroRNA; type 2 diabetes mellitus; miRNA-mRNA interaction network; systematic studymicroRNAbusiness.industryGene Expression ProfilingOrganic ChemistryType 2 Diabetes MellitusGeneral Medicinemedicine.diseaseComputer Science ApplicationsMicroRNAs030104 developmental biologyDiabetes Mellitus Type 2Gene Expression Regulationlcsh:Biology (General)lcsh:QD1-999Organ SpecificityRNA InterferenceDisease manifestationbusinessTranscriptomeSignal TransductionInternational Journal of Molecular Sciences
researchProduct

SARS-CoV-2 vaccine response and rate of breakthrough infection in patients with hematological disorders

2022

Abstract Background The clinical efficacy of SARS-CoV-2 vaccines according to antibody response in immunosuppressed patients such as hematological patients has not yet been established. Patients and methods A prospective multicenter registry-based cohort study conducted from December 2020 to December 2021 by the Spanish transplant and cell therapy group was used to analyze the relationship of antibody response at 3–6 weeks after full vaccination (2 doses) with breakthrough SARS-CoV-2 infection in 1394 patients with hematological disorders. Results At a median follow-up of 165 days after complete immunization, 37 out of 1394 (2.6%) developed breakthrough SARS-CoV-2 infection at median of 77 …

*Pfizer-BioNTech BNT162b2Cancer ResearchCOVID-19 Vaccines*Hematological malignanciesAutologous stem cell transplantationAntibodies ViralBreakthrough SARS-CoV-2 infectionModerna mRNA-1273Cohort StudiesHematological malignancies*Moderna mRNA-1273Correlates of protection*VaccineHumansProspective StudiesVacunacióPfizer-BioNTech BNT162b2Molecular BiologyBNT162 Vaccine*Immunocompromised patients*Correlates of protectionSARS-CoV-2VaccinationHematologic diseasesCOVID-19Hematology*Breakthrough SARS-CoV-2 infectionHematologic DiseasesSARS-CoV-2 vaccinesAllogeneic stem cell transplantationVirusOncologyMalalties hematològiquesImmunocompromised patients*SARS-CoV-2 vaccines*Autologous stem cell transplantation*COVID-19Vaccine*Allogeneic stem cell transplantationJournal of Hematology & Oncology
researchProduct

Cytoplasmic 5′-3′ exonuclease Xrn1p is also a genome-wide transcription factor in yeast

2014

The 5′ to 3′ exoribonuclease Xrn1 is a large protein involved in cytoplasmatic mRNA degradation as a critical component of the major decaysome. Its deletion in the yeast Saccharomyces cerevisiae is not lethal, but it has multiple physiological effects. In a previous study, our group showed that deletion of all tested components of the yeast major decaysome, including XRN1, results in a decrease in the synthetic rate and an increase in half-life of most mRNAs in a compensatory manner. Furthermore, the same study showed that the all tested decaysome components are also nuclear proteins that bind to the 5′ region of a number of genes. In the present work, we show that disruption of Xrn1 activi…

lcsh:QH426-470nascent transcriptionSaccharomyces cerevisiaeRibosome biogenesisSaccharomyces cerevisiaetranscription rateSaccharomycesGenètica molecularSaccharomycesmRNA decayExoribonucleaseGeneticsOriginal Research ArticlemRNA stabilityNuclear proteinTranscription factorGeneGenetics (clinical)GeneticsbiologyTranslation (biology)biology.organism_classificationmRNA stability.Cell biologylcsh:GeneticsMolecular MedicinemRNA synthesis
researchProduct

Growth rate controls mRNA turnover in steady and non-steady states.

2016

Gene expression has been investigated in relation with growth rate in the yeast Saccharomyces cerevisiae, following different experimental strategies. The expression of some specific gene functional categories increases or decreases with growth rate. Our recently published results have unveiled that these changes in mRNA concentration with growth depend on the relative alteration of mRNA synthesis and decay, and that, in addition to this gene-specific transcriptomic signature of growth, global mRNA turnover increases with growth rate. We discuss here these results in relation with other previous and concurrent publications, and we add new evidence which indicates that growth rate controls m…

0301 basic medicineRNA StabilitySaccharomyces cerevisiaeSaccharomyces cerevisiaeyeastTranscriptome03 medical and health sciencesTranscription (biology)Gene Expression Regulation FungalGene expressionmRNA stabilityGrowth rateRNA MessengerMolecular BiologyGenePoint of ViewMessenger RNAbiologyRNA FungalCell Biologybiology.organism_classificationMolecular biologyYeastCell biology030104 developmental biologygrowth rateGene expressiontranscriptionRNA biology
researchProduct

Proteins from rat liver cytosol which stimulate mRNA transport. Purification and interactions with the nuclear envelope mRNA translocation system.

1986

Two polysome-associated proteins with particular affinities for poly(A) have been purified from rat liver. These proteins stimulate the efflux of mRNA from isolated nuclei in conditions under which such efflux closely stimulates mRNA transport in vivo, and they are therefore considered as mRNA-transport-stimulatory proteins. Their interaction with the mRNA-translocation system in isolated nuclear envelopes has been studied. The results are generally consistent with the most recently proposed kinetic model of mRNA translocation. One protein, P58, has not been described previously. It inhibits the protein kinase that down-regulates the NTPase, it enhances the NTPase activity in both the prese…

MaleNucleocytoplasmic Transport ProteinsNuclear EnvelopeRNA-binding proteinBiologyBiochemistryCytosolPhosphoprotein PhosphatasesMRNA transportAnimalsRNA MessengerProtein kinase AMessenger RNANucleocytoplasmic Transport ProteinsRNARNA-Binding ProteinsBiological TransportRats Inbred StrainsNucleoside-TriphosphatasePhosphoric Monoester HydrolasesCell biologyRatsCytosolBiochemistryLiverPolyribosomesPhosphorylationCarrier ProteinsPoly AProtein KinasesEuropean journal of biochemistry
researchProduct

Type I interferons as the potential mechanism linking mRNA COVID-19 vaccines to Bell's palsy

2021

Therapies - Sous presse. Epreuves corrigees par l'auteur. Disponible en ligne depuis le mardi 13 avril 2021

AdultMale2019-20 coronavirus outbreakCoronavirus disease 2019 (COVID-19)Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)COVID-19 vaccines030226 pharmacology & pharmacyArticle03 medical and health sciencesPharmacovigilance0302 clinical medicineBell's palsyPhase 3 clinical trialsBell PalsymedicineType I interferonsHumansBell's palsyPharmacology (medical)Potential mechanismComputingMilieux_MISCELLANEOUSAgedCOVID-19 coronavirus disease 2019Vaccines SyntheticMessenger RNASARS-CoV-2business.industryCOVID-19Bell’s palsyMiddle Agedmedicine.diseaseVirologymRNA messenger RNA3. Good healthInterferon Type IFemale[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologiebusiness
researchProduct