Search results for "math-ph"

showing 10 items of 525 documents

Contractions of Filippov algebras

2010

We introduce in this paper the contractions $\mathfrak{G}_c$ of $n$-Lie (or Filippov) algebras $\mathfrak{G}$ and show that they have a semidirect structure as their $n=2$ Lie algebra counterparts. As an example, we compute the non-trivial contractions of the simple $A_{n+1}$ Filippov algebras. By using the \.In\"on\"u-Wigner and the generalized Weimar-Woods contractions of ordinary Lie algebras, we compare (in the $\mathfrak{G}=A_{n+1}$ simple case) the Lie algebras Lie$\,\mathfrak{G}_c$ (the Lie algebra of inner endomorphisms of $\mathfrak{G}_c$) with certain contractions $(\mathrm{Lie}\,\mathfrak{G})_{IW}$ and $(\mathrm{Lie}\,\mathfrak{G})_{W-W}$ of the Lie algebra Lie$\,\mathfrak{G}$ as…

High Energy Physics - TheoryPure mathematicsEndomorphismStructure (category theory)FOS: Physical sciencesStatistical and Nonlinear PhysicsMathematics - Rings and AlgebrasMathematical Physics (math-ph)High Energy Physics - Theory (hep-th)Simple (abstract algebra)Rings and Algebras (math.RA)Mathematics - Quantum AlgebraLie algebraFOS: MathematicsQuantum Algebra (math.QA)Mathematics::Representation TheoryMathematical PhysicsMathematics
researchProduct

The Minkowski and conformal superspaces

2006

We define complex Minkowski superspace in 4 dimensions as the big cell inside a complex flag supermanifold. The complex conformal supergroup acts naturally on this super flag, allowing us to interpret it as the conformal compactification of complex Minkowski superspace. We then consider real Minkowski superspace as a suitable real form of the complex version. Our methods are group theoretic, based on the real conformal supergroup and its Lie superalgebra.

High Energy Physics - TheoryPure mathematicsFOS: Physical sciencesReal formFísicaStatistical and Nonlinear PhysicsConformal mapLie superalgebraMathematical Physics (math-ph)Mathematics - Rings and AlgebrasSuperspaceHigh Energy Physics::TheoryGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Rings and Algebras (math.RA)Mathematics::Quantum AlgebraMinkowski spaceSupermanifoldFOS: MathematicsCompactification (mathematics)Mathematics::Representation TheorySupergroupMathematical PhysicsMathematics
researchProduct

Central extensions of the families of quasi-unitary Lie algebras

1998

The most general possible central extensions of two whole families of Lie algebras, which can be obtained by contracting the special pseudo-unitary algebras su(p,q) of the Cartan series A_l and the pseudo-unitary algebras u(p,q), are completely determined and classified for arbitrary p,q. In addition to the su(p,q) and u({p,q}) algebras, whose second cohomology group is well known to be trivial, each family includes many non-semisimple algebras; their central extensions, which are explicitly given, can be classified into three types as far as their properties under contraction are involved. A closed expression for the dimension of the second cohomology group of any member of these families …

High Energy Physics - TheoryPure mathematicsGeneral Physics and AstronomyClosed expressionFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Unitary stateCohomologyHigh Energy Physics - Theory (hep-th)Mathematics - Quantum AlgebraLie algebraFOS: MathematicsQuantum Algebra (math.QA)Contraction (operator theory)Mathematical PhysicsMathematics
researchProduct

Quantum and Braided Integrals

2001

We give a pedagogical introduction to integration techniques appropriate for non-commutative spaces while presenting some new results as well. A rather detailed discussion outlines the motivation for adopting the Hopf algebra language. We then present some trace formulas for the integral on Hopf algebras and show how to treat the $\int 1=0$ case. We extend the discussion to braided Hopf algebras relying on diagrammatic techniques. The use of the general formulas is illustrated by explicitly worked out examples.

High Energy Physics - TheoryPure mathematicsQuantum affine algebraQuantum groupFOS: Physical sciencesRepresentation theory of Hopf algebrasMathematical Physics (math-ph)Quasitriangular Hopf algebraHopf algebraFiltered algebraAlgebraHigh Energy Physics - Theory (hep-th)Mathematics::Quantum AlgebraMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)QuantumMathematical PhysicsMathematicsProceedings of Corfu Summer Institute on Elementary Particle Physics — PoS(corfu98)
researchProduct

Higher genera Catalan numbers and Hirota equations for extended nonlinear Schrödinger hierarchy

2021

We consider the Dubrovin--Frobenius manifold of rank $2$ whose genus expansion at a special point controls the enumeration of a higher genera generalization of the Catalan numbers, or, equivalently, the enumeration of maps on surfaces, ribbon graphs, Grothendieck's dessins d'enfants, strictly monotone Hurwitz numbers, or lattice points in the moduli spaces of curves. Liu, Zhang, and Zhou conjectured that the full partition function of this Dubrovin--Frobenius manifold is a tau-function of the extended nonlinear Schr\"odinger hierarchy, an extension of a particular rational reduction of the Kadomtsev--Petviashvili hierarchy. We prove a version of their conjecture specializing the Givental--M…

High Energy Physics - TheoryPure mathematicsRank (linear algebra)FOS: Physical sciences[MATH] Mathematics [math]01 natural sciencesCatalan numberMathematics::Algebraic Geometry[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]KP hierarchy0103 physical sciences[NLIN] Nonlinear Sciences [physics][NLIN]Nonlinear Sciences [physics][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]0101 mathematics[MATH]Mathematics [math]Mathematics::Symplectic GeometryMathematical PhysicsMathematicsHirota equationsPartition function (quantum field theory)ConjectureNonlinear Sciences - Exactly Solvable and Integrable SystemsHierarchy (mathematics)010102 general mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Statistical and Nonlinear PhysicsMathematical Physics (math-ph)16. Peace & justiceLax equationsManifoldModuli spaceMonotone polygonNonlinear Sciences::Exactly Solvable and Integrable SystemsHigh Energy Physics - Theory (hep-th)010307 mathematical physics[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Exactly Solvable and Integrable Systems (nlin.SI)Catalan numbersFrobenius manifoldsLetters in Mathematical Physics
researchProduct

On the computation of intersection numbers for twisted cocycles

2020

Intersection numbers of twisted cocycles arise in mathematics in the field of algebraic geometry. Quite recently, they appeared in physics: Intersection numbers of twisted cocycles define a scalar product on the vector space of Feynman integrals. With this application, the practical and efficient computation of intersection numbers of twisted cocycles becomes a topic of interest. An existing algorithm for the computation of intersection numbers of twisted cocycles requires in intermediate steps the introduction of algebraic extensions (for example square roots), although the final result may be expressed without algebraic extensions. In this article I present an improvement of this algorith…

High Energy Physics - TheoryPure mathematicsScalar (mathematics)FOS: Physical sciencesStatistical and Nonlinear PhysicsField (mathematics)Mathematical Physics (math-ph)Algebraic geometryHigh Energy Physics - PhenomenologyMathematics - Algebraic GeometryHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Square rootIntersectionProduct (mathematics)ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONFOS: MathematicsAlgebraic numberAlgebraic Geometry (math.AG)Mathematical PhysicsVector space
researchProduct

Probabilistic whereabouts of the "quantum potential"

2011

We review major appearances of the functional expression $\pm \Delta \rho ^{1/2}/ \rho ^{1/2}$ in the theory of diffusion-type processes and in quantum mechanically supported dynamical scenarios. Attention is paid to various manifestations of "pressure" terms and their meaning(s) in-there.

High Energy Physics - TheoryQuantum PhysicsHistoryStatistical Mechanics (cond-mat.stat-mech)Computer scienceProbabilistic logicQuantum potentialFOS: Physical sciencesMathematical Physics (math-ph)Computer Science ApplicationsEducationTheoretical physicsHigh Energy Physics - Theory (hep-th)Functional expressionMeaning (existential)Quantum Physics (quant-ph)QuantumCondensed Matter - Statistical MechanicsMathematical PhysicsJournal of Physics: Conference Series
researchProduct

Theory of ground state factorization in quantum cooperative systems.

2008

We introduce a general analytic approach to the study of factorization points and factorized ground states in quantum cooperative systems. The method allows to determine rigorously existence, location, and exact form of separable ground states in a large variety of, generally non-exactly solvable, spin models belonging to different universality classes. The theory applies to translationally invariant systems, irrespective of spatial dimensionality, and for spin-spin interactions of arbitrary range.

High Energy Physics - TheoryQuantum phase transitionGeneral Physics and AstronomyFOS: Physical sciencesFactorizationfactorizationQuantum mechanicsStatistical physicsSOLVABLE MODELVALIDITYENTANGLEMENTQuantumMathematical PhysicsMathematicsQuantum PhysicsMathematical Physics (math-ph)Invariant (physics)BODY APPROXIMATION METHODSUniversality (dynamical systems)Condensed Matter - Other Condensed MatterClosed and exact differential formsHigh Energy Physics - Theory (hep-th)SPIN CHAINGround stateQuantum Physics (quant-ph)Curse of dimensionalityOther Condensed Matter (cond-mat.other)Physical review letters
researchProduct

Quantifying nonclassicality: global impact of local unitary evolutions

2012

We show that only those composite quantum systems possessing nonvanishing quantum correlations have the property that any nontrivial local unitary evolution changes their global state. We derive the exact relation between the global state change induced by local unitary evolutions and the amount of quantum correlations. We prove that the minimal change coincides with the geometric measure of discord (defined via the Hilbert- Schmidt norm), thus providing the latter with an operational interpretation in terms of the capability of a local unitary dynamics to modify a global state. We establish that two-qubit Werner states are maximally quantum correlated, and are thus the ones that maximize t…

High Energy Physics - TheoryQuantum t-designquantum discordFOS: Physical sciencesQuantum Hall effect01 natural sciencesUnitary state010305 fluids & plasmasQuantum mechanics0103 physical sciencesQuantum phase estimation algorithmQuantum operationStatistical physics010306 general physicsQuantumMathematical PhysicsPhysicsQuantum discordQuantum PhysicsMathematical Physics (math-ph)Atomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterHigh Energy Physics - Theory (hep-th)Norm (mathematics)Quantum Physics (quant-ph)Other Condensed Matter (cond-mat.other)
researchProduct

Instanton Counting, Quantum Geometry and Algebra

2020

The aim of this memoir for "Habilitation \`a Diriger des Recherches" is to present quantum geometric and algebraic aspects of supersymmetric gauge theory, which emerge from non-perturbative nature of the vacuum structure induced by instantons. We start with a brief summary of the equivariant localization of the instanton moduli space, and show how to obtain the instanton partition function and its generalization to quiver gauge theory and supergroup gauge theory in three ways: the equivariant index formula, the contour integral formula, and the combinatorial formula. We then explore the geometric description of $\mathcal{N} = 2$ gauge theory based on Seiberg-Witten geometry together with it…

High Energy Physics - TheoryQuiver gauge theoryThéorie de jauje de carquoisHigh Energy Physics::Lattice[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesQuiver W-algebraqq-characterW-algébre de carquoisHigh Energy Physics::TheorySupergroupgauge theory[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]InstantonMathematics - Quantum AlgebraFOS: MathematicsQuantum Algebra (math.QA)[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Representation Theory (math.RT)Algébre vertexComputingMilieux_MISCELLANEOUSMathematical PhysicsSeiberg–Witten geometryIntegrable systemqq-caractéreVertex operator algebra[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]High Energy Physics::PhenomenologyMathematical Physics (math-ph)Localization équivarianteGéométrie de Seiberg–WittenHigh Energy Physics - Theory (hep-th)Théoriede jauje de supergroupe[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th]Systèmes intégrablesEquivariant localizationMathematics - Representation Theory
researchProduct