Search results for "mesoscopic"
showing 10 items of 709 documents
Spin-transfer torque driven motion, deformation, and instabilities of magnetic skyrmions at high currents
2020
In chiral magnets, localized topological magnetic whirls, magnetic skyrmions, can be moved by spin polarized electric currents. Upon increasing the current strength, with prospects for high-speed skyrmion motion for spintronics applications in mind, isolated skyrmions deform away from their typical circular shape. We analyze the influence of spin-transfer torques on the shape of a single skyrmion, including its stability upon adiabatically increasing the strength of the applied electric current. For rather compact skyrmions at uniaxial anisotropies well above the critical anisotropy for domain wall formation, we find for high current densities that the skyrmion assumes a non-circular shape …
Roton-roton crossover in strongly correlated dipolar Bose-nonstnon condensates
2011
We study the pair correlations and excitations of a dipolar Bose gas layer. The anisotropy of the dipole-dipole interaction allows us to tune the strength of pair correlations from strong to weak perpendicular and weak to strong parallel to the layer by increasing the perpendicular trap frequency. This change is accompanied by a roton-roton crossover in the spectrum of collective excitations, from a roton caused by the head-to-tail attraction of dipoles to a roton caused by the side-by-side repulsion, while there is no roton excitation for intermediate trap frequencies. We discuss the nature of these two kinds of rotons and the relation to instabilities of dipolar Bose gases. In both regime…
Observation of a superfluid component within solid helium.
2011
We demonstrate by neutron scattering that a localized superfluid component exists at high pressures within solid helium in aerogel. Its existence is deduced from the observation of two sharp phonon-roton spectra which are clearly distinguishable from modes in bulk superfluid helium. These roton excitations exhibit different roton gap parameters than the roton observed in the bulk fluid at freezing pressure. One of the roton modes disappears after annealing the samples. Comparison with theoretical calculations suggests that the model that reproduces the observed data best is that of superfluid double layers within the solid and at the helium-substrate interface.
Singlet and triplet excitons in conjugated polymers.
1992
Exciton states in conjugated polymers are theoretically studied in the Su-Schrieffer-Heeger model supplemented by long-range Coulomb interactions. The relationship between exciton energies and basic interaction parameters is clarified, demonstrating the special nature of one-dimensional excitons. The binding energies of the lowest singlet and triplet excitons depend sensitively upon the on-site Coulomb energy. Relevant experiments in polydiacetylene can be explained by the present model using moderate interaction strength.
Exciton mass increase in a GaAs/AlGaAs quantum well in a transverse magnetic field
2017
In this work we have investigated the exciton reflectance spectra of a high quality heterostructure with a GaAs/AlGaAs quantum well in a transverse magnetic field (Voigt geometry). It has been shown that application of the magnetic field leads to a decrease of energy distance between spectral features related to the excitonlike polariton modes. This effect has been treated as the magneto-induced increase of the exciton mass. We have shown that the hydrogenlike and diamagnetic exciton models are insufficient to describe the exciton behavior in the intermediate magnetic fields studied. Considering the symmetry of the problem, we have developed a phenomenological model which adequately describ…
Acoustically tunable photonic structures based on microcavity polaritons
2006
Abstract The interaction between surface acoustic waves (SAWs) with (Al,Ga)As microcavity polaritons results in the formation of a dynamic optical superlattice with folded light dispersion and energy stop bands when the lower polariton branch is predominantly of photonic character. For small detunings between the excitonic and optical cavity resonances, the SAW bleaches the polariton resonances through the efficient dissociation of the excitons by its piezoelectric field.
Thin Film Skyrmionics
2022
In condensed matter physics, magnetic skyrmions, topologically stabilized magnetic solitons, have been discovered in various materials systems, which has intrigued the community in terms of not only fundamental physics but also with respect to engineering applications. In particular, skyrmions in thin films are easily manipulable by electrical means even at room temperature. Concomitantly, a variety of possible applications have been proposed and proof-of-concept devices have been demonstrated. Recently, the field of skyrmion-based electronics has been referred to as skyrmionics and this field has been rapidly growing and extended in multiple directions. This review provides recent progres…
Uniform analytic description of dephasing effects in two-state transitions
2007
We describe the effect of pure dephasing upon the time-dependent dynamics of two-state quantum systems in the framework of a Lindblad equation for the time evolution of the density matrix. A uniform approximate formula is derived, which modifies the corresponding lossless transition probability by an exponential factor containing the dephasing rate and the interaction parameters. This formula is asymptotically exact in both the diabatic and adiabatic limits; comparison with numerical results shows that it is highly accurate also in the intermediate range. Several two-state models are considered in more detail, including the Landau-Zener, Rosen-Zener, Allen-Eberly, and Demkov-Kunike models, …
Resonant Rayleigh scattering by confined two-dimensional excitonic states
1997
A systematic study of resonant Rayleigh scattering in semiconductor single quantum wells has been carried out. The dependence of the scattering efficiency on the well width and the temperature has been investigated. The behaviour observed in the resonant Rayleigh spectra can be explained in terms of the confinement of the excitonic states in the plane of the well due to fluctuations in the well width. A microscopic theoretical model for the elastic scattering of light by weakly confined two-dimensional excitonic states has been developed. The Rayleigh scattering efficiency has been calculated to the lowest-order of perturbation theory and the results found to be in good agreement with the e…
Phase sticking in one-dimensional Josephson junction chains
2013
Published version of an article in the journal: Physical Review B - Condensed Matter and Materials Physics. Also available from the publisher at: http://dx.doi.org/10.1103/PhysRevB.88.104501 We studied current-voltage characteristics of long one-dimensional Josephson junction chains with Josephson energy much larger than charging energy, EJ EC. In this regime, typical I-V curves of the samples consist of a supercurrent-like branch at low-bias voltages followed by a voltage-independent chain current branch, Ichain at high bias. Our experiments showed that Ichain is not only voltage-independent but it is also practically temperature-independent up to T=0.7TC. We have successfully model the tr…