Search results for "messenger"

showing 10 items of 1493 documents

Calcium—Nutrient and Messenger

2019

Calcium is an essential element needed for growth and development of plants under both non-stressed and stress conditions. It thereby fulfills a dual function, being not only an important factor for cell wall and membrane stability, but also serving as a second messenger in many developmental and physiological processes, including the response of plants to biotic stress. The perception of non-self hereby induces an influx of calcium ions (Ca2+) into the cytosol, which is decoded into downstream responses ultimately leading to defense. Maintaining intracellular Ca2+ homeostasis is crucial for the ability to generate this signal. This review will describe the current knowledge of the mechanis…

0106 biological sciences0301 basic medicinerootsMini ReviewCellular homeostasischemistry.chemical_elementPlant SciencetransportersCalciumlcsh:Plant culture01 natural sciencesCell wall03 medical and health scienceslcsh:SB1-1110calciumChemistryBiotic stressnutrient signalingimmunityCell biologyCytosol030104 developmental biologykinasesuptakeSecond messenger systemcell wallIntracellularHomeostasis010606 plant biology & botanyFrontiers in Plant Science
researchProduct

Plants and Arbuscular Mycorrhizal Fungi: Cues and Communication in the Early Steps of Symbiotic Interactions

2007

Abstract The ubiquitous nature of arbuscular mycorrhiza (AM) pleads for common molecular and genetic determinants across different plant taxa. The cellular processes determining compatibility in early interactions prior to and during cell contact between arbuscular mycorrhizal fungi and plant roots are starting to be unraveled. The root epidermis is an active checkpoint where signal exchanges and control over root colonization occur. Root‐secreted flavonoids, flavonols, and strigolactones can act as rhizosphere signals in stimulating presymbiotic fungal growth, although their mechanism of action on the fungal cell is as yet unknown. Likewise, fungal signals (Myc factors) activate early plan…

0106 biological sciences0303 health sciencesAppressoriumRhizospherebiologyfungibiology.organism_classification01 natural sciencesCell biologyArbuscular mycorrhiza03 medical and health sciencesSymbiosisSecond messenger systemBotanySignal transductionBiogenesisIntracellular030304 developmental biology010606 plant biology & botany
researchProduct

Constitutive expression of clathrin hub hinders elicitor-induced clathrin-mediated endocytosis and defense gene expression in plant cells.

2012

International audience; Endocytosis has been recently implicated in the signaling network associated with the recognition of microbes by plants. In a previous study, we showed that the elicitor cryptogein was able to induce clathrin-mediated endocytosis (CME) in tobacco suspension cells. Herein, we investigate further the induced CME by means of a GFP-tagged clathrin light chain and a CME inhibitor, the hub domain of clathrin heavy chain. Hub constitutive expression does affect neither cell growth nor constitutive endocytosis but abolishes cryptogein-induced CME. Such an inhibition has no impact on early events in the cryptogein signaling pathway but reduces the expression of defense-associ…

0106 biological sciencesCell signaling[SDV]Life Sciences [q-bio]Recombinant Fusion ProteinseducationBiophysicsGene Expressionbright yellow-2BiologyEndocytosisGenes Plant01 natural sciencesBiochemistryClathrincryptogeinCell LineFungal Proteins03 medical and health sciencesMicroscopy Electron TransmissionStructural BiologyGene expressionTobaccoGeneticscell signalingRNA MessengerMolecular Biology030304 developmental biologyPlant Proteins0303 health sciencesCell growthCell MembraneCell BiologyReceptor-mediated endocytosisPlants Genetically ModifiedClathrinEndocytosisElicitorCell biologyRNA PlantClathrin Heavy Chains[SDE]Environmental Sciencesbiology.proteinClathrin Light ChainsSignal transduction010606 plant biology & botanySignal TransductionFEBS letters
researchProduct

AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7

2005

AbstractIn plant chloroplasts two superoxide dismutase (SOD) activities occur, FeSOD and Cu/ZnSOD, with reciprocal regulation in response to copper availability. This system presents a unique model to study the regulation of metal-cofactor delivery to an organelle. The Arabidopsis thaliana gene AtCCS encodes a functional homolog to yeast Ccs1p/Lys7p, a copper chaperone for SOD. The AtCCS protein was localized to chloroplasts where it may supply copper to the stromal Cu/ZnSOD. AtCCS mRNA expression levels are upregulated in response to Cu-feeding and senescence. We propose that AtCCS expression is regulated to allow the most optimal use of Cu for photosynthesis.

0106 biological sciencesCu/Zn superoxide dismutaseChloroplastsSaccharomyces cerevisiae ProteinsMolecular Sequence DataArabidopsisBiophysicsSaccharomyces cerevisiaeMetallo chaperoneChloroplastModels Biological01 natural sciencesBiochemistryGreen fluorescent proteinSuperoxide dismutase03 medical and health sciencesDownregulation and upregulationGene Expression Regulation PlantStructural BiologyOrganelleGeneticsAmino Acid SequenceRNA MessengerMolecular BiologyGene030304 developmental biology0303 health sciencesbiologyArabidopsis ProteinsGene Expression ProfilingGenetic Complementation TestCell BiologyYeastChloroplastProtein TransportBiochemistryChaperone (protein)Mutationbiology.proteinSequence AlignmentCopperMolecular Chaperones010606 plant biology & botanyFEBS Letters
researchProduct

Involvement of plasma membrane proteins in plant defense responses. Analysis of the cryptogein signal transduction in tobacco

1999

International audience; Cryptogein, a 98 amino acid protein secreted by the fungus Phytophthora cryptogea, induces a hypersensitive response and systemic acquired resistance in tobacco plants (Nicotiana tabacum var Xanthi). The mode of action of cryptogein has been studied using tobacco cell suspensions. The recognition of this elicitor by a plasma membrane receptor leads to a cascade of events including protein phosphorylation, calcium influx, potassium and chloride effluxes, plasma membrane depolarization, activation of a NADPH oxidase responsible for active oxygen species (AOS) production and cytosol acidification, activation of the pentose phosphate pathway, and activation of two mitoge…

0106 biological sciencesHypersensitive responseNicotiana tabacum01 natural sciencesBiochemistryFungal Proteins03 medical and health sciencesTobacco[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyAnimals[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyProtein phosphorylation[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology030304 developmental biologyPlant Proteins0303 health sciencesbiologyAlgal ProteinsCell MembraneMembrane Proteinsfood and beveragesGeneral Medicinebiology.organism_classificationElicitorCell biologyCytosolPlants ToxicMembrane proteinBiochemistrySecond messenger systemREPONSE DE LA PLANTESignal transduction010606 plant biology & botanySignal Transduction
researchProduct

Nitric Oxide in Plants: Production and Cross-talk with Ca2+ Signaling

2008

International audience; Nitric oxide (NO) is a diatomic gas that performs crucial functions in a wide array of physiological processes in animals. The past several years have revealed much about its roles in plants. It is well established that NO is synthesized from nitrite by nitrate reductase (NR) and via chemical pathways. There is increasing evidence for the occurrence of an alternative pathway in which NO production is catalysed from L-arginine by a so far non-identified enzyme. Contradictory results have been reported regarding the respective involvement of these enzymes in specific physiological conditions. Although much remains to be proved, we assume that these inconsistencies can …

0106 biological sciencesMAPK/ERK pathwayArabidopsisPlant ScienceCalcium-Transporting ATPasesBiologyNitrate reductaseArginine01 natural sciencesPlant Physiological PhenomenaNitrate ReductaseNitric oxide03 medical and health scienceschemistry.chemical_compoundNitrateProtein kinasesNitrilesAnimals[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyNitriteMolecular BiologyNitritesPlant Physiological Phenomena030304 developmental biologyMammals0303 health sciencesKinasefungiNitric oxidechemistryBiochemistrySecond messenger systemCitrullineCalciumCryptogeinNitric Oxide SynthaseGenome Plant010606 plant biology & botanySignal Transduction
researchProduct

Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization

2010

Abstract Background The shell of the pearl-producing bivalve Pinctada margaritifera is composed of an organic cell-free matrix that plays a key role in the dynamic process of biologically-controlled biomineralization. In order to increase genomic resources and identify shell matrix proteins implicated in biomineralization in P. margaritifera, high-throughput Expressed Sequence Tag (EST) pyrosequencing was undertaken on the calcifying mantle, combined with a proteomic analysis of the shell. Results We report the functional analysis of 276 738 sequences, leading to the constitution of an unprecedented catalog of 82 P. margaritifera biomineralization-related mantle protein sequences. Component…

0106 biological sciencesModels MolecularProteomicsProteome[SDV]Life Sciences [q-bio]Proteomics01 natural sciencesContig MappingMantle (mollusc)MargaritiferaIn Situ HybridizationGeneticsExpressed Sequence Tags0303 health sciencesMineralsbiologyPinctada margaritifera[ SDV.BBM.GTP ] Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]ProteomeBiotechnologyResearch Articlelcsh:QH426-470Sequence analysislcsh:BiotechnologyMolecular Sequence Data010603 evolutionary biology03 medical and health sciencesCalcification Physiologiclcsh:TP248.13-248.65[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]GeneticsAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyAmino Acid SequencePinctadaRNA Messenger[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials030304 developmental biologyBase SequenceSequence Homology Amino AcidGene Expression ProfilingAnimal StructuresMolecular Sequence AnnotationSequence Analysis DNAbiology.organism_classification[ SDV.IB.BIO ] Life Sciences [q-bio]/Bioengineering/Biomaterialslcsh:GeneticsGene Expression RegulationEvolutionary biologyPinctadaBiomineralization
researchProduct

An STE12 gene identified in the mycorrhizal fungus Glomus intraradices restores infectivity of a hemibiotrophic plant pathogen

2009

International audience; * • Mechanisms of root penetration by arbuscular mycorrhizal (AM) fungi are unknown and investigations are hampered by the lack of transformation systems for these unculturable obligate biotrophs. Early steps of host infection by hemibiotrophic fungal phytopathogens, sharing common features with those of AM fungal colonization, depend on the transcription factor STE12. * • Using degenerated primers and rapid amplification of cDNA ends, we isolated the full-length cDNA of an STE12-like gene, GintSTE, from Glomus intraradices and profiled GintSTE expression by real-time and in situ RT-PCR. GintSTE activity and function were investigated by heterologous complementation …

0106 biological sciencesPhysiologyGLOMUS INTRARADICESGenes FungalMolecular Sequence DataMutantGerminationMYCORHIZES ARBUSCULAIRESSaccharomyces cerevisiaePlant SciencePlant Roots01 natural sciencesMicrobiologyFungal ProteinsGlomeromycota03 medical and health sciencesHOST PENETRATIONFungal StructuresGene Expression Regulation FungalMycorrhizaeSequence Homology Nucleic AcidMedicago truncatulaColletotrichumAmino Acid SequenceRNA MessengerTRANSCRIPTION FACTORMycorrhizaSTE12030304 developmental biologyPhaseolus0303 health sciencesFungal proteinbiologyMYCORRHIZAReverse Transcriptase Polymerase Chain ReactionColletotrichum lindemuthianumGene Expression Profilingfungifood and beveragesSpores Fungalbiology.organism_classificationMedicago truncatula[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyColletotrichumMutationHEMIBIOTROPHIC PATHOGENSequence AlignmentGLOMEROMYCOTA010606 plant biology & botany
researchProduct

RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design.

2011

International audience; Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive experiments have not been collected in such a way that they are possible to analyze. In this review, we have collected detailed data from more than 150 experiments including all to date published and many unpublished experiments. Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involv…

0106 biological sciencesPhysiology[SDV]Life Sciences [q-bio]Tissue uptakeBioinformatics01 natural sciencesRNA interferenceRNA interferenceDatabases GeneticDelivery methodsCaenorhabditis elegansRegulation of gene expression0303 health sciencesIMMUNE-RESPONSESMANDUCA-SEXTALepidopteraRNA silencingSILKWORM BOMBYX-MORIResearch DesignInsect ProteinsRNA InterferenceMESSENGER-RNAHELICOVERPA-ARMIGERADOUBLE-STRANDED-RNAComputational biologyBiologyLepidoptera genitaliadsRNA properties03 medical and health sciencesBACILLUS-THURINGIENSISSMALL SILENCING RNASGene silencingAnimalsGene SilencingGene030304 developmental biologyRNA Double-StrandedMechanism (biology)fungiBiology and Life SciencesARMYWORM SPODOPTERA-FRUGIPERDAbiology.organism_classificationImmunity Innate010602 entomologyGene Expression RegulationInsect ScienceEpidermisCAENORHABDITIS-ELEGANSGene functionJournal of insect physiology
researchProduct

Nuclear protein kinases: still enigmatic components in plant cell signalling

2010

International audience; Plants constantly face changing conditions in their environment. Unravelling the transduction mechanisms from signal perception at the plasma membrane level down to gene expression in the nucleus is a fascinating challenge. Protein phosphorylation, catalysed by protein kinases, is one of the major posttranslational modifications involved in the specificity, kinetic(s) and intensity of a signal transduction pathway. Although commonly assumed, the involvement of nuclear protein kinases in signal transduction is often poorly characterized. In particular, both their regulation and mode of action remain to be elucidated and may lead to the unveiling of new original mechan…

0106 biological sciencesPhysiologyp38 mitogen-activated protein kinasesPROTEIN KINASENUCLEAR TRANSLOCATIONPlant ScienceBiology01 natural sciencesSecond Messenger Systems03 medical and health sciencesNCK1Protein phosphorylationNuclear proteinNUCLEUS030304 developmental biologyPROTEIN (DE)PHOSPHORYLATION0303 health sciencesGRB10SIGNAL TRANSDUCTIONNuclear ProteinsAutophagy-related protein 13PlantsCell biology[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyBiochemistryCDC37Mitogen-activated protein kinasebiology.proteinProtein Kinases010606 plant biology & botany
researchProduct