Search results for "miRNA"

showing 10 items of 190 documents

Regulatory network analysis in estradiol-treated human endothelial cells.

2021

Background/Aims: Estrogen has been reported to have beneficial effects on vascular biology through direct actions on endothelium. Together with transcription factors, miRNAs are the major drivers of gene expression and signaling networks. The objective of this study was to identify a com-prehensive regulatory network (miRNA-transcription factor-downstream genes) that controls the transcriptomic changes observed in endothelial cells exposed to estradiol. Methods: miR-NA/mRNA interactions were assembled using our previous microarray data of human umbilical vein endothelial cells (HUVEC) treated with 17ß- Estradiol (E2) (1 nmol/lL, 24 h). miRNA--mRNA pairings and their associated canonical pat…

0301 basic medicineQH301-705.5FisiologiaBiologyCatalysisArticleInorganic Chemistry03 medical and health sciences0302 clinical medicineGene expressionCadherin bindingHuman Umbilical Vein Endothelial CellsHumansGene Regulatory NetworksRNA MessengerPhysical and Theoretical ChemistryBiology (General)Molecular BiologyTranscription factorQD1-999Spectroscopytranscription factormiRNAEstradiolMicroarray analysis techniquesOrganic ChemistryPromoterEstrogensGeneral Medicineendothelial cellsComputer Science ApplicationsCell biologyDNA binding siteChemistryMicroRNAs030104 developmental biology030220 oncology & carcinogenesisCell adhesion molecule bindingTRANSFACTranscriptome
researchProduct

Hypoxia‐induced non‐coding rnas controlling cell viability in cancer

2021

Hypoxia, a characteristic of the tumour microenvironment, plays a crucial role in cancer progression and therapeutic response. The hypoxia-inducible factors (HIF-1α, HIF-2α, and HIF-3α), are the master regulators in response to low oxygen partial pressure, modulating hypoxic gene expression and signalling transduction pathways. HIFs’ activation is sufficient to change the cell phenotype at multiple levels, by modulating several biological activities from metabolism to the cell cycle and providing the cell with new characteristics that make it more aggressive. In the past few decades, growing numbers of studies have revealed the importance of non-coding RNAs (ncRNAs) as molecular mediators i…

0301 basic medicineRNA UntranslatedCellProliferationReviewlcsh:ChemistryTransduction (genetics)0302 clinical medicineNeoplasmsGene expressionBasic Helix-Loop-Helix Transcription FactorsTumor MicroenvironmentRNA NeoplasmHypoxialcsh:QH301-705.5SpectroscopyCancerGeneral MedicineCell cycleCell HypoxiaComputer Science ApplicationsCell biologyNeoplasm Proteinsmedicine.anatomical_structure030220 oncology & carcinogenesismiRNAscell cyclemedicine.symptomMiRNASignal TransductionCell SurvivallncRNAsBiologyCatalysisInorganic Chemistry03 medical and health sciencesmicroRNAmedicineHumansHIFViability assayPhysical and Theoretical ChemistryMolecular BiologyOrganic ChemistryCancerHypoxia (medical)medicine.diseaseLncRNA030104 developmental biologylcsh:Biology (General)lcsh:QD1-999
researchProduct

Ageing: from inflammation to cancer.

2018

Abstract Ageing is the major risk factor for cancer development. Hallmark of the ageing process is represented by inflammaging, which is a chronic and systemic low-grade inflammatory process. Inflammation is also a hallmark of cancer and is widely recognized to influence all cancer stages from cell transformation to metastasis. Therefore, inflammaging may represent the biological phenomena able to couple ageing process with cancer development. Here we review the molecular and cellular pathway involved in age-related chronic inflammation along with its potential triggers and their connection with cancer development.

0301 basic medicineSenescencelcsh:Immunologic diseases. AllergyAgingCellImmunologyAgeing; Cancer; DAMPs; Inflammation; MiRna; Microbiota; Obesity; SenescenceInflammationReviewlcsh:GeriatricsSenescenceMetastasis03 medical and health sciencesmicroRNAMedicineDAMPObesityCancerSettore MED/04 - Patologia GeneraleInflammationDAMPsbusiness.industryAgeing; Cancer; DAMPs; Inflammation; Microbiota; MiRna; Obesity; Senescence; Immunology; AgingMicrobiotaCancermedicine.diseaselcsh:RC952-954.6Ageing030104 developmental biologymedicine.anatomical_structureAgeingCancer researchSettore MED/26 - NeurologiaCancer developmentmedicine.symptombusinesslcsh:RC581-607MiRna
researchProduct

Identification of microRNAS differentially regulated by water deficit in relation to mycorrhizal treatment in wheat.

2019

Arbuscular mycorrhizal fungi (AMF) are soil microrganisms that establish symbiosis with plants positively influencing their resistance to abiotic stresses. The aim of this work was to identify wheat miRNAs differentially regulated by water deficit conditions in presence or absence of AMF treatment. Small RNA libraries were constructed for both leaf and root tissues considering four conditions: control (irrigated) or water deficit in presence/absence of mycorrhizal (AMF) treatment. A total of 12 miRNAs were significantly regulated by water deficit in leaves: five in absence and seven in presence of AMF treatment. In roots, three miRNAs were water deficit-modulated in absence of mycorrhizal t…

0301 basic medicineSmall RNABiologyPlant Roots03 medical and health sciences0302 clinical medicineSymbiosisTranscription (biology)Gene Expression Regulation PlantStress PhysiologicalMycorrhizaeBotanymicroRNAGeneticsProtein biosynthesisTranscriptional regulationGene Regulatory NetworksMolecular BiologyDurum wheatWater deficitTriticummiRNAPlant ProteinsAbiotic componentGene Expression ProfilingfungiGene Expression Regulation DevelopmentalGeneral MedicineCell redox homeostasisDroughtsPlant LeavesMicroRNAs030104 developmental biologyRootRNA Plant030220 oncology & carcinogenesisWheatMolecular biology reports
researchProduct

A Systematic Study of Dysregulated MicroRNA in Type 2 Diabetes Mellitus

2017

MicroRNAs (miRNAs) are small noncoding RNAs that modulate the cellular transcriptome at the post-transcriptional level. miRNA plays important roles in different disease manifestation, including type 2 diabetes mellitus (T2DM). Many studies have characterized the changes of miRNAs in T2DM, a complex systematic disease; however, few studies have integrated these findings and explored the functional effects of the dysregulated miRNAs identified. To investigate the involvement of miRNAs in T2DM, we obtained and analyzed all relevant studies published prior to 18 October 2016 from various literature databases. From 59 independent studies that met the inclusion criteria, we identified 158 dysregu…

0301 basic medicineSystematic surveytype 2 diabetes mellitussystematic study030209 endocrinology & metabolismDiseaseBioinformaticsCatalysisArticleInorganic ChemistryTranscriptomelcsh:Chemistry03 medical and health sciences0302 clinical medicineDiabetes mellitusmiRNA-mRNA interaction networkmicroRNAmedicineHumansGene Regulatory NetworksRNA MessengerPhysical and Theoretical Chemistry10. No inequalityMolecular Biologylcsh:QH301-705.5SpectroscopyAdipocytokine Signaling PathwaymicroRNA; type 2 diabetes mellitus; miRNA-mRNA interaction network; systematic studymicroRNAbusiness.industryGene Expression ProfilingOrganic ChemistryType 2 Diabetes MellitusGeneral Medicinemedicine.diseaseComputer Science ApplicationsMicroRNAs030104 developmental biologyDiabetes Mellitus Type 2Gene Expression Regulationlcsh:Biology (General)lcsh:QD1-999Organ SpecificityRNA InterferenceDisease manifestationbusinessTranscriptomeSignal TransductionInternational Journal of Molecular Sciences
researchProduct

Differentially Tolerized Mouse Antigen Presenting Cells Share a Common miRNA Signature Including Enhanced mmu-miR-223-3p Expression Which Is Sufficie…

2018

Dendritic cells (DCs) are pivotal for the induction and maintenance of antigen-specific tolerance and immunity. miRNAs mediate post-transcriptional gene regulation and control in part the differentiation and stimulation-induced immunogenic function of DCs. However, the relevance of miRNAs for the induction and maintenance of a tolerogenic state of DCs has scarcely been highlighted yet. We differentiated mouse bone marrow cells to conventional/myeloid DCs or to tolerogenic antigen presenting cells (APCs) by using a glucocorticoid (dexamethasone) or interleukin-10, and assessed the miRNA expression patterns of unstimulated and LPS-stimulated cell populations by array analysis and QPCR. Differ…

0301 basic medicineT cellPopulationinterleukin-10dexamethasoneBiologyCFLAR03 medical and health sciences0302 clinical medicineImmune systemmir-223microRNAmedicinePharmacology (medical)educationAntigen-presenting cellOriginal ResearchmiRNARegulation of gene expressionPharmacologyeducation.field_of_studylcsh:RM1-950mmu-miR-223-3ptolerogenic dendritic cellsCell biology030104 developmental biologymedicine.anatomical_structurelcsh:Therapeutics. Pharmacology030215 immunologyFrontiers in Pharmacology
researchProduct

The Challenging Riddle about the Janus-Type Role of Hsp60 and Related Extracellular Vesicles and miRNAs in Carcinogenesis and the Promises of Its Sol…

2021

Hsp60 is one of the most ancient and evolutionarily conserved members of the chaperoning system. It typically resides within mitochondria, in which it contributes to maintaining the organelle’s proteome integrity and homeostasis. In the last few years, it has been shown that Hsp60 also occurs in other locations, intracellularly and extracellularly, including cytosol, plasma-cell membrane, and extracellular vesicles (EVs). Consequently, non-canonical functions and interacting partners of Hsp60 have been identified and it has been realized that it is a hub molecule in diverse networks and pathways and that it is implicated, directly or indirectly, in the development of various pathological co…

0301 basic medicineanimal structuresBiologyMitochondrionmedicine.disease_causechaperonopathieslcsh:TechnologyChaperoninlcsh:Chemistry03 medical and health sciences0302 clinical medicinemicroRNAmedicineExtracellularGeneral Materials ScienceInstrumentationlcsh:QH301-705.5CarcinogenesichaperonotherapymiRNAFluid Flow and Transfer Processeslcsh:TProcess Chemistry and Technologyextracellular vesicle (EV)fungiGeneral EngineeringHsp60lcsh:QC1-999Computer Science ApplicationsCell biologyCytosol030104 developmental biologylcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040030220 oncology & carcinogenesisProteomeChaperonopathieHSP60Carcinogenesislcsh:Engineering (General). Civil engineering (General)carcinogenesislcsh:PhysicsApplied Sciences
researchProduct

ceRNA Network Regulation of TGF-β, WNT, FOXO, Hedgehog Pathways in the Pharynx of Ciona robusta

2021

The transforming growth factor-β (TGF-β) family of cytokines performs a multifunctional signaling, which is integrated and coordinated in a signaling network that involves other pathways, such as Wintless, Forkhead box-O (FOXO) and Hedgehog and regulates pivotal functions related to cell fate in all tissues. In the hematopoietic system, TGF-β signaling controls a wide spectrum of biological processes, from immune system homeostasis to the quiescence and self-renewal of hematopoietic stem cells (HSCs). Recently an important role in post-transcription regulation has been attributed to two type of ncRNAs: microRNAs and pseudogenes. Ciona robusta, due to its philogenetic position close to verte…

0301 basic medicineascidianpseudogenepseudogeneslcsh:ChemistryTransforming Growth Factor betaProtein Interaction MappingHomeostasisRNA-Seqlcsh:QH301-705.53' Untranslated RegionsSpectroscopyTissue homeostasisForkhead Box Protein O1Wnt signaling pathwayHigh-Throughput Nucleotide Sequencingvirus diseasesGeneral Medicinefemale genital diseases and pregnancy complicationsComputer Science ApplicationsCell biologyNGSStem cellTGF-βCell fate determinationBiologyCatalysisArticleInorganic ChemistryWNT03 medical and health sciencesmicroRNAAnimalsCell LineageHedgehog ProteinsTGF-Physical and Theoretical ChemistryMolecular BiologyHedgehogneoplasmsmiRNA030102 biochemistry & molecular biologyCompeting endogenous RNAOrganic ChemistryfungiComputational BiologyHematopoiesisWnt ProteinsMicroRNAs030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Gene Expression RegulationImmune SystemPharynxFOXOCionaTransforming growth factorInternational Journal of Molecular Sciences
researchProduct

Non-Coding RNAs in Multiple Myeloma Bone Disease Pathophysiology

2020

Bone remodeling is uncoupled in the multiple myeloma (MM) bone marrow niche, resulting in enhanced osteoclastogenesis responsible of MM-related bone disease (MMBD). Several studies have disclosed the mechanisms underlying increased osteoclast formation and activity triggered by the various cellular components of the MM bone marrow microenvironment, leading to the identification of novel targets for therapeutic intervention. In this regard, recent attention has been given to non-coding RNA (ncRNA) molecules, that finely tune gene expression programs involved in bone homeostasis both in physiological and pathological settings. In this review, we will analyze major signaling pathways involved …

0301 basic medicinelcsh:QH426-470Bone diseasenon-coding RNAReviewBiologyBiochemistryBone remodeling03 medical and health sciences0302 clinical medicineOsteoclastmicroRNAGeneticsmedicinetumor microenvironmentMolecular BiologyMultiple myelomamiRNAlong non-coding RNAmedicine.diseaseNon-coding RNALong non-coding RNAmultiple myelomalcsh:Genetics030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisCancer researchbone diseaseBone marrowNon-Coding RNA
researchProduct

Epigenetic Regulation in the Pathogenesis of Sjögren Syndrome and Rheumatoid Arthritis

2019

Autoimmune rheumatic diseases, such as Sjögren syndrome (SS) and rheumatoid arthritis (RA), are characterized by chronic inflammation and autoimmunity, which cause joint tissue damage and destruction by triggering reduced mobility and debilitation in patients with these diseases. Initiation and maintenance of chronic inflammatory stages account for several mechanisms that involve immune cells as key players and the interaction of the immune cells with other tissues. Indeed, the overlapping of certain clinical and serologic manifestations between SS and RA may indicate that numerous immunologic-related mechanisms are involved in the physiopathology of both these diseases. It is widely accept…

0301 basic medicinelcsh:QH426-470InflammationReviewmedicine.disease_causeAutoimmunityPathogenesis03 medical and health sciences0302 clinical medicineImmune systemImmunitymicroRNAGeneticsmedicineautoimmune diseasesEpigeneticsepigenetic pathwaysGenetics (clinical)DNA methylationepigeneticshistone modificationsbusiness.industrylcsh:Genetics030104 developmental biology030220 oncology & carcinogenesismiRNAsDNA methylationImmunologyrheumatic diseasesMolecular Medicinemedicine.symptombusinessFrontiers in Genetics
researchProduct