Search results for "microdomains"

showing 10 items of 65 documents

Vitamin E transport, membrane incorporation and cell metabolism: Is α-tocopherol in lipid rafts an oar in the lifeboat?

2010

International audience; Vitamin E is composed of closely related compounds, including tocopherols and tocotrienols. Studies of the last decade provide strong support for a specific role of alpha-tocopherol in cell signalling and the regulation of gene expression. It produces significant effects on inflammation, cell proliferation and apoptosis that are not shared by other vitamin E isomers with similar antioxidant properties. The different behaviours of vitamin E isomers might relate, at least in part, to the specific effects they exert at the plasma membrane. alpha-Tocopherol is not randomly distributed throughout the phospholipid bilayer of biological membranes, and as compared with other…

Cell deathAntioxidant[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutrition[SDV]Life Sciences [q-bio]medicine.medical_treatmentalpha-TocopherolSignal transductionBiologyAntioxidants03 medical and health scienceschemistry.chemical_compoundMembrane Microdomains0302 clinical medicineATP Binding Cassette Transporter Subfamily B Member 3medicineHumansVitamin ETocopherolATP Binding Cassette Transporter Subfamily B Member 2Protein PrecursorsLipid bilayerLipid raftLDL-Receptor Related Proteins030304 developmental biology0303 health sciencesTocopherolVitamin ECell MembraneBiological TransportBiological membraneLipid metabolismPeptide FragmentsCell biology[SDV] Life Sciences [q-bio]Lipid raftIntestinal AbsorptionLiverReceptors LDLBiochemistrychemistryATP-Binding Cassette Transporterslipids (amino acids peptides and proteins)Antioxidantalpha-Tocopherol[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgeryFood ScienceBiotechnologyMolecular Nutrition & Food Research
researchProduct

Oxidative stress resistance in hippocampal cells is associated with altered membrane fluidity and enhanced nonamyloidogenic cleavage of endogenous am…

2010

Reactive oxygen species (ROS) have important roles as signaling molecules in the regulation of a variety of biological processes. On the other hand, chronic oxidative stress exerted by ROS is widely considered a causative factor in aging. Therefore, cells need to be able to adapt to a chronic oxidative challenge and do so to a certain cell-type-specific extent. Recently, we have shown in oxidative-stress-resistant cell lines, HT22(H2O2) and HT22(Glu), derived from the neuronal cell line HT22 by chronic exposure to sublethal concentrations of H(2)O(2) and glutamate, that, in addition to the known antioxidant defense mechanisms, e.g., activation of antioxidant enzymes or up-regulation of heat…

Cell signalingMembrane FluidityBlotting WesternOxidative phosphorylationmedicine.disease_causeHippocampusBiochemistryNeuroprotectionCell LineAmyloid beta-Protein PrecursorMembrane MicrodomainsPhysiology (medical)Membrane fluidityAmyloid precursor proteinmedicineHumansCellular SenescenceNeuronschemistry.chemical_classificationReactive oxygen speciesbiologyChemistryCell MembraneMembrane ProteinsCell biologyOxidative Stressbiology.proteinSphingomyelinOxidative stressFree Radical Biology and Medicine
researchProduct

Quantitative characterization of tetraspanin 8 homointeractions in the plasma membrane

2021

The spatial distribution of proteins in cell membranes is crucial for signal transduction, cell communication and membrane trafficking. Members of the Tetraspanin family organize functional protein clusters within the plasma membrane into so-called Tetraspanin-enriched microdomains (TEMs). Direct interactions between Tetraspanins are believed to be important for this organization. However, studies thus far have utilized mainly co-immunoprecipitation methods that cannot distinguish between direct and indirect, through common partners, interactions. Here we study Tetraspanin 8 homointeractions in living cells via quantitative fluorescence microscopy. We demonstrate that Tetraspanin 8 exists i…

Cell signalingTetraspaninsLipoylationDimerTransfectionBiochemistryArticleProtein–protein interactionchemistry.chemical_compoundMembrane MicrodomainsTetraspaninFluorescence Resonance Energy TransferHumansMolecular BiologyChemistryCell BiologyDissociation constantHEK293 CellsMembraneMicroscopy FluorescenceMembrane proteinembryonic structuresBiophysicsThermodynamicsProtein MultimerizationSignal transductionSignal TransductionBiochemical Journal
researchProduct

Oxysterols: Influence on plasma membrane rafts microdomains and development of ocular diseases

2015

Oxidation of cholesterol into oxysterols is a major way of elimination of cholesterol from the liver and extrahepatic tissues, including the brain and the retina. Oxysterols are involved in various cellular processes. Numerous links have been established between oxysterols and several disorders such as neurodegenerative pathologies, retinopathies and atherosclerosis. Different components of the lipid layer such as sphingolipids, sterols and proteins participate to membrane fluidity and forme lipid rafts microdomains. Few data are available on the links between lipids rafts and oxysterols. The purpose of this review is to suggest the potential role of lipid rafts microdomains in the developm…

Cell type[SDV.BIO]Life Sciences [q-bio]/BiotechnologyEye DiseasesOxysterol[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionClinical BiochemistryModels BiologicalBiochemistrychemistry.chemical_compoundMembrane MicrodomainsEndocrinologyretinopathyMembrane fluiditypolycyclic compoundsAnimalsHumanscyp46a1[SDV.MHEP.OS]Life Sciences [q-bio]/Human health and pathology/Sensory OrgansLipid bilayerMolecular BiologyLipid raftPharmacologylipid raftsCholesterolOrganic Chemistry[ SDV.BIO ] Life Sciences [q-bio]/BiotechnologycholesterolSphingolipidCell biologySterolsMembranechemistryBiochemistry[ SDV.MHEP.OS ] Life Sciences [q-bio]/Human health and pathology/Sensory Organsoxysterolslipids (amino acids peptides and proteins)[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
researchProduct

Caveolin and GLT-1 gene expression is reciprocally regulated in primary astrocytes: Association of GLT-1 with non-caveolar lipid rafts

2004

Caveolae represent membrane microdomains acting as integrators of cellular signaling and functional processes. Caveolins are involved in the biogenesis of caveolae and regulate the activity of caveolae-associated proteins. Although caveolin proteins are found in the CNS, the regulation of caveolins in neural cells is poorly described. In the present study, we investigated different modes and mechanisms of caveolin gene regulation in primary rat astrocytes. We demonstrated that activation of cAMP-dependent signaling pathways led to a marked reduction in protein levels of caveolin-1/-2 in cortical astrocytes. Application of transforming growth factor-alpha (TGF-alpha) also resulted in a decre…

Central Nervous SystemCaveolin 2Caveolin 1Down-RegulationGlutamic AcidBiologyCaveolinsHistone DeacetylasesChromatin remodelingRats Sprague-DawleyPhosphatidylinositol 3-KinasesCellular and Molecular NeuroscienceAstrocyte differentiationMembrane MicrodomainsCaveolaeCaveolinCyclic AMPAnimalsRNA MessengerLipid raftCerebral CortexRegulation of gene expressionTransforming Growth Factor alphaRatsCell biologyCaveolin 2Animals NewbornExcitatory Amino Acid Transporter 2Gene Expression RegulationNeurologyAstrocytesCaveolin 1Signal TransductionGlia
researchProduct

Differential Promotion of Glutamate Transporter Expression and Function by Glucocorticoids in Astrocytes from Various Brain Regions

2005

Steroids that activate glucocorticoid receptors (GRs) and mineralocorticoid receptors have important regulatory effects on neural development, plasticity, and the body's stress response. Here, we investigated the role of corticosteroids in regulating the expression of the glial glutamate transporters glial glutamate transporter-1 (GLT-1) and glutamate-aspartate transporter (GLAST) in rat primary astrocytes. The synthetic glucocorticoid dexamethasone provoked a marked increase of GLT-1 transcription and protein levels in cortical astrocytes, whereas GLAST expression remained unaffected. Up-regulation of GLT-1 expression was accompanied by an enhanced glutamate uptake, which could be blocked …

Central Nervous SystemTime FactorsAmino Acid Transport System X-AGLigandsBiochemistryDexamethasoneRats Sprague-Dawleychemistry.chemical_compoundGlucocorticoid receptorMineralocorticoid receptorAdrenal Cortex HormonesCorticosteroneCerebellumGene expressionLuciferasesReceptorDNA Modification MethylasesKainic AcidReverse Transcriptase Polymerase Chain ReactionGlutamate receptorBrainImmunohistochemistryUp-RegulationMifepristoneAzacitidineNeurogliaGlucocorticoidmedicine.drugmedicine.medical_specialtymedicine.drug_classBlotting WesternDetergentsBiologyDecitabineTransfectionMembrane MicrodomainsInternal medicinemedicineAnimalsGlucocorticoidsMolecular BiologyDNA PrimersFluorescent DyesDose-Response Relationship DrugCell BiologyDNA MethylationRatsReceptors MineralocorticoidEndocrinologychemistryMineralocorticoidAstrocytesCorticosteroneJournal of Biological Chemistry
researchProduct

Mechanisms of RNA loading into exosomes

2015

AbstractUpon fusion of multivesicular bodies (MVBs) with the plasma membrane, intraluminal vesicles (ILVs) are released into the extracellular space as exosomes. Since the lipid composition of the exosomal membrane resembles that of raft microdomains, the inward budding process involves the raft-like region of the MVB limiting membrane. Although published research suggests that cellular RNAs may be selectively sorted into exosomes, the molecular mechanisms remain elusive. In this review, we suggest that there is a continuous interaction of cellular RNAs with the outer (cytoplasmic) surface of MVBs and that the selection for incorporation of these RNAs into ILVs is based on their affinity to…

CeramideBiophysicsBiologyExosomesModels BiologicalBiochemistryIntraluminal vesiclesCeramideMembrane Lipidschemistry.chemical_compoundRaftsMembrane MicrodomainsStructural BiologymicroRNAGeneticsExtracellularAnimalsHumansMolecular BiologyVesicleCell MembraneMembraneMultivesicular BodiesRNA-Binding ProteinsRNAMicroRNACell BiologyRaftMicrovesiclesCell biologychemistryCytoplasmRNAlipids (amino acids peptides and proteins)FEBS Letters
researchProduct

Cholesterol reporter molecules.

2007

Cholesterol is a major constituent of the membranes in most eukaryotic cells where it fulfills multiple functions. Cholesterol regulates the physical state of the phospholipid bilayer, affects the activity of several membrane proteins, and is the precursor for steroid hormones and bile acids. Cholesterol plays a crucial role in the formation of membrane microdomains such as “lipid rafts” and caveolae. However, our current understanding on the membrane organization, intracellular distribution and trafficking of cholesterol is rather poor. This is mainly due to inherent difficulties to label and track this small lipid. In this review, we describe different approaches to detect cholesterol in …

Cholesterol oxidaseBacterial ToxinsBiophysicsBiologyBiochemistryFilipinchemistry.chemical_compoundHemolysin ProteinsMembrane MicrodomainsCaveolaeAnimalsHumansFilipinLipid bilayerMolecular BiologyLipid raftFluorescent DyesCholesterolCholesterol OxidaseCholesterol bindingCell BiologyCholesterolEukaryotic CellschemistryMembrane proteinBiochemistryMolecular Probeslipids (amino acids peptides and proteins)Bioscience reports
researchProduct

Probes for studying cholesterol binding and cell biology.

2011

Cholesterol is a multifunctional lipid in eukaryotic cells. It regulates the physical state of the phospholipid bilayer, is crucially involved in the formation of membrane microdomains, affects the activity of many membrane proteins, and is the precursor for steroid hormones and bile acids. Thus, cholesterol plays a profound role in the physiology and pathophysiology of eukaryotic cells. The cholesterol molecule has achieved evolutionary perfection to fulfill its different functions in membrane organization. Here, we review basic approaches to explore the interaction of cholesterol with proteins, with a particular focus on the high diversity of fluorescent and photoreactive cholesterol prob…

Clinical BiochemistryLipid BilayersBiologyBiochemistryCell membranechemistry.chemical_compoundEndocrinologyMembrane MicrodomainsmedicineAnimalsHumansLipid bilayerMolecular BiologyPhospholipidsG protein-coupled receptorFluorescent DyesPharmacologyCyclodextrinsBinding SitesCholesterolOrganic ChemistryCholesterol bindingCell MembraneMembrane ProteinsSterolSterol regulatory element-binding proteinCell biologymedicine.anatomical_structureCholesterolEukaryotic CellsMembrane proteinBiochemistrychemistryMolecular Probeslipids (amino acids peptides and proteins)Steroids
researchProduct

CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells

2004

We investigated the membrane localization of CD95 in type I and type II cells, which differ in their ability to recruit and activate caspase-8. We found that CD95 was preferentially located in lipid rafts of type I cells, while it was present both in raft and non-raft plasma membrane sub-domains of type II cells. After stimulation, CD95 located in phospholipid-rich plasma membrane was recruited to lipid rafts in both types of cells. Similarly, CD95 cross-linking resulted in caspase-independent translocation of FADD/MORT1 and caspase-8 to the lipid rafts, which was prevented by a death domain-defective receptor. CD95 internalization was then rapid in type I and delayed in type II cells and s…

Death Domain Receptor Signaling Adaptor ProteinsEndosomeT-Lymphocytesmedia_common.quotation_subjectImmunologyApoptosisReceptors Tumor Necrosis FactorCell LineMembrane MicrodomainsSettore MED/04 - PATOLOGIA GENERALECell Line TumorReceptorsHumansImmunology and Allergyfas ReceptorFADDInternalizationLipid raftLipid raftsDeath domainmedia_commonTumorbiologyVesicleFas receptorEndocytosisCell biologyProtein TransportCholesterolCD95 death-inducing signaling complexCaspasesCD95biology.proteinlipids (amino acids peptides and proteins)biological phenomena cell phenomena and immunityCaspase-8Tumor Necrosis FactorCaspase-8; CD95; Lipid rafts; Apoptosis; Caspases; Cell Line Tumor; Cholesterol; Death Domain Receptor Signaling Adaptor Proteins; Humans; Membrane Microdomains; Protein Binding; Protein Transport; Receptors Tumor Necrosis Factor; T-Lymphocytes; fas Receptor; Endocytosis; Signal Transduction; Immunology and Allergy; ImmunologyProtein BindingSignal TransductionEuropean Journal of Immunology
researchProduct