Search results for "multivalency"
showing 9 items of 9 documents
Multifunctional Poly(ethylene glycol)s
2011
In the rapidly evolving multidisciplinary field of polymer therapeutics, tailored polymer structures represent the key constituent to explore and harvest the potential of bioactive macromolecular hybrid structures. In light of the recent developments for anticancer drug conjugates, multifunctional polymers are becoming ever more relevant as drug carriers. However, the potentially best suited polymer, poly(ethylene glycol) (PEG), is unfavorable owing to its limited functionality. Therefore, multifunctional linear copolymers (mf-PEGs) based on ethylene oxide (EO) and appropriate epoxide comonomers are attracting increased attention. Precisely engineered via living anionic polymerization and d…
Supramolecular polymerization of sulfated dendritic peptide amphiphiles into multivalent L-selectin binders
2021
The synthesis of a sulfate-modified dendritic peptide amphiphile and its self-assembly into one-dimensional rod-like architectures in aqueous medium is reported. The influence of the ionic strength on the supramolecular polymerization was probed via circular dichroism spectroscopy and cryogenic transmission electron microscopy. Physiological salt concentrations efficiently screen the charges of the dendritic building block equipped with eight sulfate groups and trigger the formation of rigid supramolecular polymers. Since multivalent sulfated supramolecular structures mimic naturally occurring L-selectin ligands, the corresponding affinity was evaluated using a competitive SPR binding assay…
Physics of the nuclear pore complex: Theory, modeling and experiment
2021
Abstract The hallmark of eukaryotic cells is the nucleus that contains the genome, enclosed by a physical barrier known as the nuclear envelope (NE). On the one hand, this compartmentalization endows the eukaryotic cells with high regulatory complexity and flexibility. On the other hand, it poses a tremendous logistic and energetic problem of transporting millions of molecules per second across the nuclear envelope, to facilitate their biological function in all compartments of the cell. Therefore, eukaryotes have evolved a molecular “nanomachine” known as the Nuclear Pore Complex (NPC). Embedded in the nuclear envelope, NPCs control and regulate all the bi-directional transport between the…
Picomolar inhibition of cholera toxin by a pentavalent ganglioside GM1os-calix[5]arene
2013
Cholera toxin (CT), the causative agent of cholera, displays a pentavalent binding domain that targets the oligosaccharide of ganglioside GM1 (GM1os) on the periphery of human abdominal epithelial cells. Here, we report the first GM1os-based CT inhibitor that matches the valency of the CT binding domain (CTB). This pentavalent inhibitor contains five GM1os moieties linked to a calix[5]arene scaffold. When evaluated by an inhibition assay, it achieved a picomolar inhibition potency (IC50 = 450 pM) for CTB. This represents a significant multivalency effect, with a relative inhibitory potency of 100000 compared to a monovalent GM1os derivative, making GM1os-calix[5]arene one of the most potent…
Low-generation dendrimers with a calixarene core and based on a chiral C2-symmetric pyrrolidine as iminosugar mimics
2012
The preparation of low-generation dendrimers based on a simple calix[4]arene scaffold by insertion of the iminosugar-analogue C2-symmetric 3,4-dihydroxypyrrolidine is described. This methodology allows a rapid incorporation of a considerable number of iminosugar-like moieties in a reduced volume and in a well-defined geometry. The inclusion of alkali-metal ions (sodium and potassium) in the polar cavity defined by the acetamide moieties at the lower rim of the calixarene was demonstrated, which allows also the rigidification of the dendrimer structure and the iminosugar presentation in the clusters. The combination of the supramolecular properties of calixarenes with the advantage of a dend…
The Scope of Application of Macrocyclic Polyamines Beyond Metal Chelation
2019
International audience; Recent advances in the use of radiometals for both imaging and therapy has spurred on the development of an original chemistry that endows radionuclide-chelating molecular cages with ever sharper physicochemical properties. Macrocyclic polyamines (MPAs) such as cyclen and DOTA are among the most frequently encountered cages for the design of new radiotracers, owing to their versatile chemistry that makes them customizable molecular tools. The idea of using MPAs for alternative purposes has recently emerged, with an eye towards benefiting from their unique topology, versatility, symmetry and water-solubility. This review summarizes strategies that have been recently i…
Clicked and long spaced galactosyl- and lactosylcalix[4]arenes: New multivalent galectin-3 ligands
2014
Four novel calix[4]arene-based glycoclusters were synthesized by conjugating the saccharide units to the macrocyclic scaffold using the CuAAC reaction and using long and hydrophilic ethylene glycol spacers. Initially, two galactosylcalix[4]arenes were prepared starting from saccharide units and calixarene cores which differ in the relative dispositions of the alkyne and azido groups. Once the most convenient synthetic pathway was selected, two further lactosylcalix[4]arenes were obtained, one in the cone, the other one in the 1,3-alternate structure. Preliminary studies of the interactions of these novel glycocalixarenes with galectin-3 were carried out by using a lectin-functionalized chip…
Efficient Self-Assembly of Di-, Tri-, Tetra-, and Hexavalent Hosts with Predefined Geometries for the Investigation of Multivalency
2015
Coordination-driven self-assembly of differently shaped di- to hexavalent crown-ether host molecules is described. A series of [21]crown-7- and [24]crown-8-substituted bipyridine and terpyridine ligands was synthetized in a "toolbox" approach. Subsequent coordination to 3d transition metal and ruthenium(II) ions provides an easy and fast access to host assemblies with variable valency and pre-defined orientations of the crown-ether moieties. Preliminary isothermal calorimetry (ITC) titrations provided promising results, which indicated the host complexes under study to be suitable for the future investigation of multivalent and cooperative binding. The hosts described herein will also be su…
Transient Multivalent Nanobody Targeting to CD206-Expressing Cells via PH-Degradable Nanogels
2020
To target nanomedicines to specific cells, especially of the immune system, nanobodies can be considered as an attractive tool, as they lack the Fc part as compared to traditional antibodies and, thus, prevent unfavorable Fc-receptor mediated mistargeting. For that purpose, we have site-specifically conjugated CD206/MMR-targeting nanobodies to three types of dye-labeled nanogel derivatives: non-degradable nanogels, acid-degradable nanogels (with ketal crosslinks), and single polymer chains (also obtained after nanogel degradation). All of them can be obtained from the same reactive ester precursor block copolymer. After incubation with naï