Search results for "mutation."

showing 10 items of 2808 documents

An STE12 gene identified in the mycorrhizal fungus Glomus intraradices restores infectivity of a hemibiotrophic plant pathogen

2009

International audience; * • Mechanisms of root penetration by arbuscular mycorrhizal (AM) fungi are unknown and investigations are hampered by the lack of transformation systems for these unculturable obligate biotrophs. Early steps of host infection by hemibiotrophic fungal phytopathogens, sharing common features with those of AM fungal colonization, depend on the transcription factor STE12. * • Using degenerated primers and rapid amplification of cDNA ends, we isolated the full-length cDNA of an STE12-like gene, GintSTE, from Glomus intraradices and profiled GintSTE expression by real-time and in situ RT-PCR. GintSTE activity and function were investigated by heterologous complementation …

0106 biological sciencesPhysiologyGLOMUS INTRARADICESGenes FungalMolecular Sequence DataMutantGerminationMYCORHIZES ARBUSCULAIRESSaccharomyces cerevisiaePlant SciencePlant Roots01 natural sciencesMicrobiologyFungal ProteinsGlomeromycota03 medical and health sciencesHOST PENETRATIONFungal StructuresGene Expression Regulation FungalMycorrhizaeSequence Homology Nucleic AcidMedicago truncatulaColletotrichumAmino Acid SequenceRNA MessengerTRANSCRIPTION FACTORMycorrhizaSTE12030304 developmental biologyPhaseolus0303 health sciencesFungal proteinbiologyMYCORRHIZAReverse Transcriptase Polymerase Chain ReactionColletotrichum lindemuthianumGene Expression Profilingfungifood and beveragesSpores Fungalbiology.organism_classificationMedicago truncatula[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyColletotrichumMutationHEMIBIOTROPHIC PATHOGENSequence AlignmentGLOMEROMYCOTA010606 plant biology & botany
researchProduct

An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-coenzyme A carboxylase is a major determinant of sensitivity to ar…

2003

Abstract A 3,300-bp DNA fragment encoding the carboxyl-transferase domain of the multidomain, chloroplastic acetyl-coenzyme A carboxylase (ACCase) was sequenced in aryloxyphenoxypropionate (APP)-resistant and -sensitive Alopecurus myosuroides (Huds.). No resistant plant contained an Ile-1,781-Leu substitution, previously shown to confer resistance to APPs and cyclohexanediones (CHDs). Instead, an Ile-2,041-Asn substitution was found in resistant plants. Phylogenetic analysis of the sequences revealed that Asn-2,041 ACCase alleles derived from several distinct origins. Allele-specific polymerase chain reaction associated the presence of Asn-2,041 with seedling resistance to APPs but not to C…

0106 biological sciencesPhysiologyMolecular Sequence DataSequence alignmentPlant ScienceBiology01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants geneticschemistry.chemical_compoundMagnoliopsida[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsmental disordersGeneticsTransferaseVULPINAmino Acid SequenceIsoleucinePeptide sequencePhylogenyComputingMilieux_MISCELLANEOUS2. Zero hungerchemistry.chemical_classificationPolymorphism GeneticCyclohexanonesHerbicidesAcetyl-CoA carboxylase04 agricultural and veterinary sciencesACETYL-COA CARBOXYLASEPyruvate carboxylaseProtein Structure TertiaryEnzymeBiochemistrychemistryMutation040103 agronomy & agriculture0401 agriculture forestry and fisheriesIsoleucinePropionatesSequence AlignmentDNA010606 plant biology & botanyResearch Article
researchProduct

Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression and hypersensitive response

2011

L'article original est publié par The American Society of Plant Biologists; International audience; The Arabidopsis (Arabidopsis thaliana) phytoalexin-deficient mutant pad2-1 displays enhanced susceptibility to a broad range of pathogens and herbivorous insects that correlates with deficiencies in the production of camalexin, indole glucosinolates, and salicylic acid (SA). The pad2-1 mutation is localized in the GLUTAMATE-CYSTEINE LIGASE (GCL) gene encoding the first enzyme of glutathione biosynthesis. While pad2-1 glutathione deficiency is not caused by a decrease in GCL transcripts, analysis of GCL protein level revealed that pad2-1 plants contained only 48% of the wild-type protein amoun…

0106 biological sciencesPhysiologyMutantGlutathione reductaseArabidopsisOligosaccharidesPlant Science01 natural scienceschemistry.chemical_compoundAnti-Infective AgentsGene Expression Regulation PlantCamalexinArabidopsis thaliana0303 health sciencesGlutathioneBiochemistryHost-Pathogen InteractionsDisease SusceptibilitySalicylic AcidOxidation-ReductionSignal TransductionHypersensitive responsePhytophthoradisease resistanceBiologyNitric Oxiderespiratory burst oxidase homolog d[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciencesStress PhysiologicalGeneticsPlants Interacting with Other Organismsglutathione reductase030304 developmental biologyPlant DiseasesArabidopsis ProteinsCell MembraneWild typeGlutathioneHydrogen Peroxidebiology.organism_classificationMolecular biologyPlant LeavesOxidative StresschemistryMutationglutathione-s-transferaseIsochorismate synthasebiology.proteinglutamate-cysteine ligaseReactive Oxygen Species010606 plant biology & botany
researchProduct

Floral Color, Anthocyanin Synthesis Gene Expression and Control in Cape Erica Species

2019

Introduction: The Cape Floristic Region (CFR) is a biodiversity hotspot, recognized globally for its unusually high levels of endemism. The origins of this biodiversity are a long-standing topic of research. The largest “Cape clade,” Erica, radiated dramatically in the CFR, its ca. 690 species arising within 10–15 Ma. Notable between- and within-species flower color variation in Erica may have contributed to the origins of species diversity through its impact on pollinator efficiency and specificity. Methods: We investigate the expression and function of the genes of the anthocyanin biosynthesis pathway that controls floral color in 12 Erica species groups using RT-qPCR and UPLC-MS/MS. Resu…

0106 biological sciencesRT-qPCRBiodiversitySpecies diversityPlant ScienceBiologylcsh:Plant culture010603 evolutionary biology01 natural sciencesBiodiversity hotspotanthocyaninWhite (mutation)PollinatorEvolutionary biologyUPLC-MS/MSgene expressionlcsh:SB1-1110EndemismCladefloral colorGeneEricaOriginal Research010606 plant biology & botanyFrontiers in Plant Science
researchProduct

An isoleucine-leucine substitution in chloroplastic acetyl-CoA carboxylase from green foxtail (Setaria viridis L. Beauv.) is responsible for resistan…

2002

The cDNAs encoding chloroplastic acetyl-CoA carboxylase (ACCase, EC 6.4.1.2) from three lines of Setaria viridis (L. Beauv.) resistant or sensitive to sethoxydim, and from one sethoxydim-sensitive line of Setaria italica (L. Beauv.) were cloned and sequenced. Sequence comparison revealed that a single isoleucine-leucine substitution discriminated ACCases from sensitive and resistant lines. Using near-isogenic lines of S. italica derived from interspecific hybridisation, we demonstrated that the transfer of the S. viridis mutant ACCase allele into a sethoxydim-sensitive S. italica line conferred resistance to this herbicide. We confirmed this result using allele-specific polymerase chain rea…

0106 biological sciencesSetariaChloroplastsMutantMolecular Sequence DataDrug ResistancePlant ScienceMolecular cloningPoaceae01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants geneticsLeucine[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsGeneticsPoint MutationAmino Acid SequenceIsoleucineComputingMilieux_MISCELLANEOUSAllelesPhylogenyGenes DominantbiologySequence Homology Amino AcidSetaria viridisCyclohexanonesHerbicidesAcetyl-CoA carboxylase04 agricultural and veterinary sciencesbiology.organism_classification3. Good healthPyruvate carboxylaseBiochemistryAmino Acid Substitution040103 agronomy & agriculture0401 agriculture forestry and fisheriesLeucineIsoleucineSequence Alignment010606 plant biology & botanyAcetyl-CoA CarboxylasePlanta
researchProduct

A Network Model for the Correlation between Epistasis and Genomic Complexity

2008

The study of genetic interactions (epistasis) is central to the understanding of genome organization and evolution. A general correlation between epistasis and genomic complexity has been recently shown, such that in simpler genomes epistasis is antagonistic on average (mutational effects tend to cancel each other out), whereas a transition towards synergistic epistasis occurs in more complex genomes (mutational effects strengthen each other). Here, we use a simple network model to identify basic features explaining this correlation. We show that, in small networks with multifunctional nodes, lack of redundancy, and absence of alternative pathways, epistasis is antagonistic on average. In c…

0106 biological sciencesSilent mutationGenome evolutionDNA Mutational Analysislcsh:MedicineBiology010603 evolutionary biology01 natural sciencesGenomeModels BiologicalCorrelation03 medical and health sciencesComputational Biology/Metabolic NetworksGenetics and Genomics/Population GeneticsAnimalsHumanslcsh:Science030304 developmental biologyGenomic organization0303 health sciencesEvolutionary BiologyMultidisciplinaryComputational Biology/Systems BiologyGenomeEvolutionary Biology/Evolutionary and Comparative GeneticsModels GeneticHuman evolutionary geneticsSystems Biologylcsh:RRobustness (evolution)Computational BiologyGenetics and GenomicsEpistasis GeneticGenomicsModels TheoreticalEvolutionary biologyMutationEpistasislcsh:QAlgorithmsResearch ArticlePLoS ONE
researchProduct

Prefoldins contribute to maintaining the levels of the spliceosome LSM2–8 complex through Hsp90 in Arabidopsis

2020

14 p.-7 fig.-2 tab.

0106 biological sciencesSpliceosomeAcademicSubjects/SCI00010RNA SplicingMutantArabidopsis01 natural sciencesChaperonin//purl.org/becyt/ford/1 [https]03 medical and health sciencesGene Expression Regulation PlantArabidopsisRNA and RNA-protein complexesGeneticsHSP90 Heat-Shock Proteins//purl.org/becyt/ford/1.6 [https]030304 developmental biologyprefoldins0303 health sciencesbiologyArabidopsis ProteinsRNA-Binding Proteinsbiology.organism_classificationHsp903. Good healthCell biologyProteostasisMultiprotein ComplexesMutationRNA splicingSpliceosomesbiology.proteinLSM2-8 complexspliceosomeSmall nuclear RNAMolecular ChaperonesProtein Binding010606 plant biology & botany
researchProduct

β-Amyrin Synthase1 Controls the Accumulation of the Major Saponins Present in Pea (Pisum sativum)

2021

Abstract The use of pulses as ingredients for the production of food products rich in plant proteins is increasing. However, protein fractions prepared from pea or other pulses contain significant amounts of saponins, glycosylated triterpenes that can impart an undesirable bitter taste when used as an ingredient in foodstuffs. In this article, we describe the identification and characterization of a gene involved in saponin biosynthesis during pea seed development, by screening mutants obtained from two Pisum sativum TILLING (Targeting Induced Local Lesions IN Genomes) populations in two different genetic backgrounds. The mutations studied are located in a gene designated PsBAS1 (β-amyrin s…

0106 biological sciencesTILLINGPhysiologyMutantNonsense mutationPlant Sciencemedicine.disease_cause01 natural sciencesPisum03 medical and health sciencesSpatio-Temporal AnalysisSativumGene Expression Regulation PlantLoss of Function Mutationmedicine[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyIntramolecular TransferasesGenePlant Proteins030304 developmental biology2. Zero hunger[SDV.EE]Life Sciences [q-bio]/Ecology environment0303 health sciencesMutationbiologyPeasfood and beveragesCell BiologyGeneral MedicineSaponinsbiology.organism_classificationBiochemistrySeedsFunctional genomics010606 plant biology & botany
researchProduct

Null models for animal social network analysis and data collected via focal sampling: Pre‐network or node network permutation?

2020

In social networks analysis, two different approaches have predominated in creating null models for hypothesis testing, namely pre‐network and node network permutation approaches. Although the pre‐network permutation approach appears more advantageous, its use has mainly been restricted to data on associations and sampling methods such as ‘group follows’. The pre‐network permutation approach has recently been adapted to data on interactions and the focal sampling method, but its performance in different scenarios has not been thoroughly explored. Here, we assessed the performance of the pre‐network and node network permutation approach in several simulated scenarios based on proneness to fa…

0106 biological sciencesTheoretical computer scienceComputer scienceEcological Modeling05 social sciencesNull (mathematics)Social network analysis (criminology)Sampling (statistics)Group living010603 evolutionary biology01 natural sciences[SHS]Humanities and Social SciencesPermutationSciences du Vivant [q-bio]/Autre [q-bio.OT]0501 psychology and cognitive sciences050102 behavioral science & comparative psychologyEcology Evolution Behavior and SystematicsComputingMilieux_MISCELLANEOUSVDP::Samfunnsvitenskap: 200::Urbanisme og fysisk planlegging: 230
researchProduct

Genome reduction of the aphid endosymbiont Buchnera aphidicola in a recent evolutionary time scale.

2007

International audience; Genome reduction, a typical feature of symbiotic bacteria, was analyzed in the last stages of evolution of Buchnera aphidicola, the primary aphid endosymbiont, in two neutrally evolving regions: the pseudogene cmk and an intergenic region. These two regions were examined in endosymbionts from several lineages of their aphid host Rhopalosiphum padi, and different species of the same genus, whose divergence times ranged from 0.62 to 19.51 million years. Estimates of nucleotide substitution rates were between 4.3 and 6.7 x 10(-9) substitution/site/year, with G or C nucleotides being substituted around four times more frequently than A or T. Two different types of indel …

0106 biological sciencesTime FactorsPseudogeneBiology010603 evolutionary biology01 natural sciencesGenomeDNA MitochondrialEvolution Molecular03 medical and health sciencesIntergenic regionBuchneraPhylogeneticsGeneticsAnimalsMolecular clockIndelSymbiosisPhylogeny030304 developmental biologyGenetics0303 health sciences[SDV.GEN]Life Sciences [q-bio]/GeneticsBase SequenceGeographyNucleotidesGeneral Medicinebiology.organism_classificationFixation (population genetics)HaplotypesAphidsCalibrationMutationBuchneraGenome BacterialGene
researchProduct