Search results for "nanosensor"
showing 10 items of 33 documents
Luminescent TOP Nanosensors for Simultaneously Measuring Temperature, Oxygen, and pH at a Single Excitation Wavelength
2019
Two nanosensors for simultaneous optical measurements of the bioanalytically and biologically relevant analytes temperature (“T”), oxygen (“O”), and pH (“P”) have been designed. These “TOP” nanosensors are based on 100 nm-sized silica-coated polystyrene nanoparticles (PS-NPs) doped with a near-infrared emissive oxygen- and temperature-sensitive chromium(III) complex ([Cr(ddpd)2][BPh4]3, CrBPh4) and an inert reference dye (Nile Red, NR or 5,10,15,20-tetrakis(pentafluorophenyl) porphyrin, TFPP) and are covalently labeled with pH-sensitive fluorescein isothiocyanate (FITC). These emitters can be excited at the same wavelength and reveal spectrally distinguishable emission bands, allowing for r…
Plasmonic nanosensors reveal a height dependence of MinDE protein oscillations on membrane features
2018
6 p.-4 fig.
Plasmonic Nanosensors for the Determination of Drug Effectiveness on Membrane Receptors.
2016
We demonstrate the potential of the NanoSPR (nanoscale surface plasmon resonance sensors) method as a simple and cheap tool for the quantitative study of membrane protein–protein interactions. We use NanoSPR to determine the effectiveness of two potential drug candidates that inhibit the protein complex formation between FtsA and ZipA at initial stages of bacterial division. As the NanoSPR method relies on individual gold nanorods as sensing elements, there is no need for fluorescent labels or organic cosolvents, and it provides intrinsically high statistics. NanoSPR could become a powerful tool in drug development, drug delivery, and membrane studies.
Nanosensor Devices for CBRN-Agents Detection: Theory and Design
2018
Pressing challenges of recent decades, associated with agents that are aggressive towards humans – substances and radiation of chemical, biological, radiological, and nuclear (CBRN) agents – require scientific and technological responses. These responses lie in the areas of agent detection and protection from them. The mentioned bio destructive agents can be divided into 2 groups: (1) chemical and biochemical, and (2) radiative (leading to chemical destruction of biomass). In this study, we consider models of universal track nanosensors that are capable of producing a correlated electrical response to the flow of active agents.
Gold Nanorods as Plasmonic Sensors for Particle Diffusion.
2016
Plasmonic gold nanoparticles are normally used as sensor to detect analytes permanently bound to their surface. If the interaction between the analyte and the nanosensor surface is negligible, it only diffuses through the sensor’s sensing volume, causing a small temporal shift of the plasmon resonance position. By using a very sensitive and fast detection scheme, we are able to detect these small fluctuations in the plasmon resonance. With the help of a theoretical model consistent with our detection geometry, we determine the analyte’s diffusion coefficient. The method is verified by observing the trends upon changing diffusor size and medium viscosity, and the diffusion coefficients obtai…
Plasmonic Nanosensor Array for Multiplexed DNA-based Pathogen Detection
2019
In this research we introduce a plasmonic nanoparticle based optical biosensor for monitoring of molecular binding events. The sensor utilizes spotted gold nanoparticle arrays as sensing platform. The nanoparticle spots are functionalized with capture DNA sequences complementary to the analyte (target) DNA. Upon incubation with the target sequence, it will bind on the respectively complementary functionalized particle spot. This binding changes the local refractive index, which is detected spectroscopically as the resulting changes of the localized surface plasmon resonance (LSPR) peak wavelength. In order to increase the signal, a small gold nanoparticle label is introduced. The binding ca…
Design and computer simulations of 2D MeX2 solid-state nanopores for DNA and protein detection analysis
2020
Solid-state nanopores (SSN) have emerged as versatile devices for biomolecule analysis. One of the most promising applications of SSN is DNA and protein sequencing, at a low cost and faster than the current standard methods. SSN sequencing is based on the measurement of ionic current variations when a biomolecule embedded in electrolyte is driven through a nanopore under an applied electric potential. As a biomolecule translocates through the nanopore, it occupies the pore volume and blocks the passage of ions. Hence, ultrafast monitoring of ionic flow during the passage of a biomolecule yields information about its structure and chemical properties. The size of the sensing region in SSN is…
Overview of the Evolution of Silica-Based Chromo-Fluorogenic Nanosensors
2019
[EN] This review includes examples of silica-based, chromo-fluorogenic nanosensors with the aim of illustrating the evolution of the discipline in recent decades through relevant research developed in our group. Examples have been grouped according to the sensing strategies. A clear evolution from simply functionalized materials to new protocols involving molecular gates and the use of highly selective biomolecules such as antibodies and oligonucleotides is reported. Some final examples related to the evolution of chromogenic arrays and the possible use of nanoparticles to communicate with other nanoparticles or cells are also included. A total of 64 articles have been summarized, highlight…
Nanosensors for intelligent packaging
2021
Abstract Intelligent packaging is an emerging area with a high potentials. Sensors and indicators are key elements, together with enabling technologies, for the development of a new generation of packaging able to interact with the sample and the user. Nanotechnology offers interesting opportunities for the development of active components, integration with the packaging, miniaturization, communication, and batteries. However, its use in intelligent packaging is still limited. We report herein a revision of recent examples of sensors including nanomaterials or nanostructures with potential application in packaging. The references include time temperature indicators, pH, moisture and pressur…
Reversible pH-induced fluorescence colour change of gold nanoclusters based on pH-regulated surface interactions.
2019
To prepare water-dispersible, biocompatible, ratiometric pH nanosensors is challenging. We report here for the first time that the emission colour of NAD+-capped AuNCs responds to the mono-/bidentate anchoring of the phosphoric groups of the ligand. The AuNCs exhibit a high luminescence (21% quantum yield) and an outstanding performance as fluorescent ratiometric pH sensors over a broad pH range.