Search results for "nanosensor"

showing 10 items of 33 documents

Luminescent TOP Nanosensors for Simultaneously Measuring Temperature, Oxygen, and pH at a Single Excitation Wavelength

2019

Two nanosensors for simultaneous optical measurements of the bioanalytically and biologically relevant analytes temperature (“T”), oxygen (“O”), and pH (“P”) have been designed. These “TOP” nanosensors are based on 100 nm-sized silica-coated polystyrene nanoparticles (PS-NPs) doped with a near-infrared emissive oxygen- and temperature-sensitive chromium(III) complex ([Cr(ddpd)2][BPh4]3, CrBPh4) and an inert reference dye (Nile Red, NR or 5,10,15,20-tetrakis(pentafluorophenyl) porphyrin, TFPP) and are covalently labeled with pH-sensitive fluorescein isothiocyanate (FITC). These emitters can be excited at the same wavelength and reveal spectrally distinguishable emission bands, allowing for r…

010401 analytical chemistryDopingAnalytical chemistryNile redNanoparticle010402 general chemistry01 natural sciencesPorphyrinFluorescence0104 chemical sciencesAnalytical Chemistrychemistry.chemical_compoundchemistryNanosensorExcited stateLuminescenceAnalytical Chemistry
researchProduct

Plasmonic nanosensors reveal a height dependence of MinDE protein oscillations on membrane features

2018

6 p.-4 fig.

02 engineering and technologyEscherichia-coli010402 general chemistryCurvature01 natural sciencesBiochemistryCatalysisQuantitative Biology::Subcellular ProcessesColloid and Surface ChemistryNanosensorSpectroscopyPlasmonPhospholipidsHydrophobic residuesPlasmonic nanoparticlesChemistryScatteringSensorsGeneral ChemistryBinding021001 nanoscience & nanotechnology0104 chemical sciencesMembraneMembrane curvatureChemical physics0210 nano-technology
researchProduct

Plasmonic Nanosensors for the Determination of Drug Effectiveness on Membrane Receptors.

2016

We demonstrate the potential of the NanoSPR (nanoscale surface plasmon resonance sensors) method as a simple and cheap tool for the quantitative study of membrane protein–protein interactions. We use NanoSPR to determine the effectiveness of two potential drug candidates that inhibit the protein complex formation between FtsA and ZipA at initial stages of bacterial division. As the NanoSPR method relies on individual gold nanorods as sensing elements, there is no need for fluorescent labels or organic cosolvents, and it provides intrinsically high statistics. NanoSPR could become a powerful tool in drug development, drug delivery, and membrane studies.

0301 basic medicineDrugMaterials sciencemedia_common.quotation_subjectNanotechnologyCell Cycle Proteins02 engineering and technology03 medical and health sciencesBacterial ProteinsNanosensorEscherichia coliGeneral Materials ScienceSurface plasmon resonancePlasmonmedia_commonEscherichia coli ProteinsSurface Plasmon Resonance021001 nanoscience & nanotechnologyNanostructuresCytoskeletal Proteins030104 developmental biologyMembraneDrug developmentDrug deliveryFtsA0210 nano-technologyCarrier ProteinsProtein BindingACS applied materialsinterfaces
researchProduct

Nanosensor Devices for CBRN-Agents Detection: Theory and Design

2018

Pressing challenges of recent decades, associated with agents that are aggressive towards humans – substances and radiation of chemical, biological, radiological, and nuclear (CBRN) agents – require scientific and technological responses. These responses lie in the areas of agent detection and protection from them. The mentioned bio destructive agents can be divided into 2 groups: (1) chemical and biochemical, and (2) radiative (leading to chemical destruction of biomass). In this study, we consider models of universal track nanosensors that are capable of producing a correlated electrical response to the flow of active agents.

Agent detectionNanosensorChemical destructionEnvironmental scienceNanotechnologyDetection theory02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology0210 nano-technology01 natural sciences0104 chemical sciences
researchProduct

Gold Nanorods as Plasmonic Sensors for Particle Diffusion.

2016

Plasmonic gold nanoparticles are normally used as sensor to detect analytes permanently bound to their surface. If the interaction between the analyte and the nanosensor surface is negligible, it only diffuses through the sensor’s sensing volume, causing a small temporal shift of the plasmon resonance position. By using a very sensitive and fast detection scheme, we are able to detect these small fluctuations in the plasmon resonance. With the help of a theoretical model consistent with our detection geometry, we determine the analyte’s diffusion coefficient. The method is verified by observing the trends upon changing diffusor size and medium viscosity, and the diffusion coefficients obtai…

AnalyteChemistrybusiness.industryPhysics::OpticsNanoparticleNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesNanosensorColloidal goldOptoelectronicsGeneral Materials SciencePhysical and Theoretical ChemistrySurface plasmon resonanceDiffusion (business)0210 nano-technologybusinessPlasmonLocalized surface plasmonThe journal of physical chemistry letters
researchProduct

Plasmonic Nanosensor Array for Multiplexed DNA-based Pathogen Detection

2019

In this research we introduce a plasmonic nanoparticle based optical biosensor for monitoring of molecular binding events. The sensor utilizes spotted gold nanoparticle arrays as sensing platform. The nanoparticle spots are functionalized with capture DNA sequences complementary to the analyte (target) DNA. Upon incubation with the target sequence, it will bind on the respectively complementary functionalized particle spot. This binding changes the local refractive index, which is detected spectroscopically as the resulting changes of the localized surface plasmon resonance (LSPR) peak wavelength. In order to increase the signal, a small gold nanoparticle label is introduced. The binding ca…

AnalyteMaterials scienceta221Molecular bindingMetal NanoparticlesNanoparticleBioengineering02 engineering and technologybiosensorit01 natural sciencesSensor arrayLimit of DetectionNanosensorplasmonic arrayNanotechnologyLSPR sensingSurface plasmon resonanceDNA FungalInstrumentationPlasmonCandidaDNA detectionFluid Flow and Transfer ProcessesPlasmonic nanoparticlesBase Sequenceta114business.industryProcess Chemistry and Technology010401 analytical chemistryta1182Fourier-transform-imaging spectroscopynanobiotekniikkaDNASurface Plasmon Resonance021001 nanoscience & nanotechnologyplasmonic nanoparticles0104 chemical sciencesAspergillusOptoelectronicsnanohiukkasetGoldDNA Probes0210 nano-technologybusinessACS Sensors
researchProduct

Design and computer simulations of 2D MeX2 solid-state nanopores for DNA and protein detection analysis

2020

Solid-state nanopores (SSN) have emerged as versatile devices for biomolecule analysis. One of the most promising applications of SSN is DNA and protein sequencing, at a low cost and faster than the current standard methods. SSN sequencing is based on the measurement of ionic current variations when a biomolecule embedded in electrolyte is driven through a nanopore under an applied electric potential. As a biomolecule translocates through the nanopore, it occupies the pore volume and blocks the passage of ions. Hence, ultrafast monitoring of ionic flow during the passage of a biomolecule yields information about its structure and chemical properties. The size of the sensing region in SSN is…

BiomoléculesNanosensor2D materialsMatériaux 2DBiomoleculeNanocapteurGraphène[PHYS.COND.CM-GEN] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other][PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]TmdcSimulations MDMD SimulationsGrapheneDcmt
researchProduct

Overview of the Evolution of Silica-Based Chromo-Fluorogenic Nanosensors

2019

[EN] This review includes examples of silica-based, chromo-fluorogenic nanosensors with the aim of illustrating the evolution of the discipline in recent decades through relevant research developed in our group. Examples have been grouped according to the sensing strategies. A clear evolution from simply functionalized materials to new protocols involving molecular gates and the use of highly selective biomolecules such as antibodies and oligonucleotides is reported. Some final examples related to the evolution of chromogenic arrays and the possible use of nanoparticles to communicate with other nanoparticles or cells are also included. A total of 64 articles have been summarized, highlight…

ColorNanoparticleNanotechnologyReviewMesoporous010402 general chemistry01 natural sciencesBiochemistryFluorescencegated materialsAnalytical ChemistryQUIMICA ORGANICAMolecular recognitionsensorNanosensorarraysGated materialsElectrical and Electronic EngineeringArraysInstrumentationSensorchemistry.chemical_classification010405 organic chemistryChemistryChromogenicOligonucleotideBiomoleculeQUIMICA INORGANICASilicaHighly selectiveAtomic and Molecular Physics and Opticscolor0104 chemical sciencessilicaNanoparticlesnanoparticlesfluorescencemolecular recognitionMolecular recognitionmesoporousMesoporous materialSensors
researchProduct

Nanosensors for intelligent packaging

2021

Abstract Intelligent packaging is an emerging area with a high potentials. Sensors and indicators are key elements, together with enabling technologies, for the development of a new generation of packaging able to interact with the sample and the user. Nanotechnology offers interesting opportunities for the development of active components, integration with the packaging, miniaturization, communication, and batteries. However, its use in intelligent packaging is still limited. We report herein a revision of recent examples of sensors including nanomaterials or nanostructures with potential application in packaging. The references include time temperature indicators, pH, moisture and pressur…

Computer scienceNanosensorMiniaturizationActive componentsSystems engineeringActive packagingKey (cryptography)
researchProduct

Reversible pH-induced fluorescence colour change of gold nanoclusters based on pH-regulated surface interactions.

2019

To prepare water-dispersible, biocompatible, ratiometric pH nanosensors is challenging. We report here for the first time that the emission colour of NAD+-capped AuNCs responds to the mono-/bidentate anchoring of the phosphoric groups of the ligand. The AuNCs exhibit a high luminescence (21% quantum yield) and an outstanding performance as fluorescent ratiometric pH sensors over a broad pH range.

Denticity010405 organic chemistryLigandChemistryMetals and AlloysQuantum yieldGeneral Chemistry010402 general chemistryPhotochemistry01 natural sciencesFluorescenceCatalysis0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsNanoclustersNanosensorMaterials ChemistryCeramics and CompositesNAD+ kinaseLuminescenceChemical communications (Cambridge, England)
researchProduct