Search results for "neoplasm"

showing 10 items of 8607 documents

Down-Regulation of Cannabinoid Type 1 (CB1) Receptor and its Downstream Signaling Pathways in Metastatic Colorectal Cancer

2019

Changes in the regulation of endocannabinoid production, together with an altered expression of their receptors are hallmarks of cancer, including colorectal cancer (CRC). Although several studies have been conducted to understand the biological role of the CB1 receptor in cancer, little is known about its involvement in the metastatic process of CRC. The aim of this study was to investigate the possible link between CB1 receptor expression and the presence of metastasis in patients with CRC, investigating the main signaling pathways elicited downstream of CB1 receptor in colon cancer. Fifty-nine consecutive patients, with histologically proven colorectal cancer, were enrolled in the study,…

0301 basic medicineCancer ResearchCannabinoid receptorColorectal cancercolorectal cancerlcsh:RC254-282ArticleMetastasisMalignant transformation03 medical and health sciences0302 clinical medicineMedicinemetastasisendocannabinoid systemReceptorbusiness.industryCancerlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseasePrimary tumor030104 developmental biologyOncology030220 oncology & carcinogenesisCancer researchSignal transductionbusinesscannabinoid type 1 (CB1) receptorCancers
researchProduct

Prevention of carcinogenesis and metastasis by Artemisinin-type drugs.

2018

Artemisia annua (sweet wormwood, qinhao) is an ancient Chinese herbal remedy for pyrexia. Nowadays, artemisinin (qinghaosu) and its derivatives belong to the standard therapies against malaria worldwide, and its discovery has led to the Nobel Prize in Physiology and Medicine to Youyou Tu in 2015. While most attention has been paid to the treatment of malaria, there is increasing evidence that Artemisinin-type drugs bear a considerable potential to treat and prevent cancer. Rather than reporting on therapy of cancer, this review gives a comprehensive and timely overview on the chemopreventive effects of artemisinin and its derivatives against carcinogenesis and metastasis formation, followin…

0301 basic medicineCancer ResearchCarcinogenesisArtemisia annuaCancer metastasisArtemisia annuaBioinformaticsmedicine.disease_causeMetastasis03 medical and health sciencesAntimalarials0302 clinical medicineNeoplasmsparasitic diseasesmedicineHumansArtemisininNeoplasm MetastasisToxicity profileClinical Trials as TopicbiologyMolecular Structurebusiness.industryCancermedicine.diseasebiology.organism_classificationArtemisinins030104 developmental biologyOncology030220 oncology & carcinogenesisCarcinogenesisbusinessMalariamedicine.drugPhytotherapyCancer letters
researchProduct

Membrane-anchored heat-shock protein 70 (Hsp70) in cancer.

2020

International audience; Hsp70 is a highly conserved and inducible heat shock protein that belongs to the HSP70 family of molecular chaperones and plays a central role in protein homeostasis. The main function of Hsp70 is to protect cells from physiological, pathological and environmental insults, as it assists an ATP-dependent manner the process of protein folding. Since Hsp70 provides critical cell survival functions, cancer cells are assumed to rely on this chaperone. Strong evidence suggests that Hsp70 is upregulated in different type of cancers and is involved in tumor growth, invasion, migration and resistance to anti-cancer therapy. Interestingly, this Hsp70 upregulation induces Hsp70…

0301 basic medicineCancer ResearchCarcinogenesisCell SurvivalHsp70 translocation[SDV]Life Sciences [q-bio]Antineoplastic AgentsExosomesTargeting Hsp7003 medical and health sciences0302 clinical medicineDownregulation and upregulationHeat shock proteinNeoplasmsExtracellularHumansHSP70 Heat-Shock ProteinsExosomal Hsp70biologyChemistryCell MembraneHsp70Cell biologyUp-Regulation[SDV] Life Sciences [q-bio]030104 developmental biologyMembraneMembrane Hsp70Oncology030220 oncology & carcinogenesisChaperone (protein)Cancer cellbiology.proteinDisease ProgressionProtein foldingCancer letters
researchProduct

Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants

2017

One of the contributory causes of colon cancer is the negative effect of reactive oxygen species on DNA repair mechanisms. Currently, there is a growing support for the concept that oxidative stress may be an important etiological factor for carcinogenesis. The purpose of this review is to elucidate the role of oxidative stress in promoting colorectal carcinogenesis and to highlight the potential protective role of antioxidants. Several studies have documented the importance of antioxidants in countering oxidative stress and preventing colorectal carcinogenesis. However, there are conflicting data in the literature concerning its proper use in humans, since these studies did not yield defin…

0301 basic medicineCancer ResearchCarcinogenesisSettore MED/06 - Oncologia MedicaColorectal cancerDNA repairCellReviewColorectal Neoplasmmedicine.disease_causeAntioxidants03 medical and health sciences0302 clinical medicineAntioxidants; Colorectal cancer; Dysbiosis; Oxidative stress; Review; Animals; Antioxidants; Carcinogenesis; Colorectal Neoplasms; Humans; Reactive Oxygen Species; Oxidative Stress; Oncology; Cancer ResearchAnimalsHumansMedicinecolorectal cancer dysbiosis microbioma oxodative stress carcinogenesiCarcinogenesichemistry.chemical_classificationReactive oxygen speciesAnimalbusiness.industryOxidative StreGeneral MedicineColorectal carcinogenesismedicine.diseaseColorectal cancerDysbiosiOxidative StressSettore MED/18 - Chirurgia Generalecolorectal cancer dysbiosis microbioma oxodative stress carcinogenesis030104 developmental biologymedicine.anatomical_structureOncologyBiochemistrychemistry030220 oncology & carcinogenesisCancer researchAntioxidantColorectal NeoplasmsReactive Oxygen SpeciesReactive Oxygen SpeciebusinessCarcinogenesisDysbiosisOxidative stressHumanAnticancer Research
researchProduct

Oleocanthal exerts antitumor effects on human liver and colon cancer cells through ROS generation

2017

The beneficial health properties of the Mediterranean diet are well recognized. The principle source of fat in Mediterranean diet is extra-virgin olive oil (EVOO). Oleocanthal (OC) is a naturally occurring minor phenolic compound isolated from EVOO, which has shown a potent anti-inflammatory activity, by means of its ability to inhibit the cyclooxygenase (COX) enzymes COX-1 and COX-2. A large body of evidence indicates that phenols exhibit anticancer activities. The aim of the present study was to evaluate the potential anticancer effects of OC in hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) models. A panel of human HCC (HepG2, Huh7, Hep3B and PLC/PRF/5) and CRC (HT29, SW48…

0301 basic medicineCancer ResearchCarcinoma HepatocellularHepatocellular carcinomaOleocanthalExtra-virgin olive oilCellApoptosisCyclopentane Monoterpenes03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePhenolsOleocanthalmedicineHumansCyclooxygenase InhibitorsViability assayOlive OilCaspaseCell ProliferationAldehydesbiologyCell growthLiver NeoplasmsApoptosiHep G2 CellsCell cycledigestive system diseasesColorectal carcinoma030104 developmental biologymedicine.anatomical_structureOncologychemistryApoptosisCell culture030220 oncology & carcinogenesisImmunologybiology.proteinCancer researchReactive oxygen specieColorectal NeoplasmsReactive Oxygen SpeciesDNA DamageInternational Journal of Oncology
researchProduct

Trabectedin triggers direct and NK-mediated cytotoxicity in multiple myeloma

2019

Background Genomic instability is a feature of multiple myeloma (MM), and impairment in DNA damaging response (DDR) has an established role in disease pathobiology. Indeed, a deregulation of DNA repair pathways may contribute to genomic instability, to the establishment of drug resistance to genotoxic agents, and to the escape from immune surveillance. On these bases, we evaluated the role of different DDR pathways in MM and investigated, for the first time, the direct and immune-mediated anti-MM activity of the nucleotide excision repair (NER)-dependent agent trabectedin. Methods Gene-expression profiling (GEP) was carried out with HTA2.0 Affymetrix array. Evaluation of apoptosis, cell cyc…

0301 basic medicineCancer ResearchCell cycle checkpointNatural killerDNA repairmedicine.medical_treatmentMyelomalcsh:RC254-28203 medical and health sciences0302 clinical medicineMicro-RNAmedicineHumansMolecular BiologyAntineoplastic Agents AlkylatingTrabectedin3D-modelChemistrylcsh:RC633-647.5ResearchMicro-RNAsHematologylcsh:Diseases of the blood and blood-forming organsCell cycleNKG2Dlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensKiller Cells Natural030104 developmental biologyCytokineOncologyApoptosis3D-models030220 oncology & carcinogenesis3D-models; Micro-RNAs; Myeloma; Natural killer; TrabectedinCancer researchDNA fragmentationMultiple Myelomamedicine.drugTrabectedinJournal of Hematology & Oncology
researchProduct

Molecular, Biological and Structural Features of VL CDR-1 Rb44 Peptide, Which Targets the Microtubule Network in Melanoma Cells

2019

Microtubules are important drug targets in tumor cells, owing to their role in supporting and determining the cell shape, organelle movement and cell division. The complementarity-determining regions (CDRs) of immunoglobulins have been reported to be a source of anti-tumor peptide sequences, independently of the original antibody specificity for a given antigen. We found that, the anti-Lewis B mAb light-chain CDR1 synthetic peptide Rb44, interacted with microtubules and induced depolymerization, with subsequent degradation of actin filaments, leading to depolarization of mitochondrial membrane-potential, increase of ROS, cell cycle arrest at G2/M, cleavage of caspase-9, caspase-3 and PARP, …

0301 basic medicineCancer ResearchCell divisionComplementarity determining regionCleavage (embryo)lcsh:RC254-28203 medical and health sciences0302 clinical medicineDownregulation and upregulationMicrotubulecomplementarity-determining regionActinbiologyChemistryIntrinsic apoptosisapoptosislcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogenspeptideCell biology030104 developmental biologyTubulintubulinOncology030220 oncology & carcinogenesisbiology.proteinmetastatic melanomamicrotubuleFrontiers in Oncology
researchProduct

Multiple Myeloma-Derived Extracellular Vesicles Induce Osteoclastogenesis through the Activation of the XBP1/IRE1α Axis

2020

Bone disease severely affects the quality of life of over 70% of multiple myeloma (MM) patients, which daily experience pain, pathological fractures, mobility issues and an increased mortality. Recent data have highlighted the crucial role of the endoplasmic reticulum-associated unfolded protein response (UPR) in malignant transformation and tumor progression

0301 basic medicineCancer ResearchCell signalingXBP1Cellular differentiationlcsh:RC254-282Article03 medical and health sciences0302 clinical medicineSettore BIO/13 - Biologia ApplicataTranscription factorChemistryEndoplasmic reticulumextracellular-vesiclesExtracellular vesiclelcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensCell biologymultiple myelomaUPR-related molecules030104 developmental biologyosteoclastsOncology030220 oncology & carcinogenesisUnfolded protein responsePhosphorylationbone diseaseCancers
researchProduct

Intratumoral Heterogeneity and Longitudinal Changes in Gene Expression Predict Differential Drug Sensitivity in Newly Diagnosed and Recurrent Gliobla…

2020

Background: Inevitable recurrence after radiochemotherapy is the major problem in the treatment of glioblastoma, the most prevalent type of adult brain malignancy. Glioblastomas are notorious for a high degree of intratumor heterogeneity manifest through a diversity of cell types and molecular patterns. The current paradigm of understanding glioblastoma recurrence is that cytotoxic therapy fails to target effectively glioma stem cells. Recent advances indicate that therapy-driven molecular evolution is a fundamental trait associated with glioblastoma recurrence. There is a growing body of evidence indicating that intratumor heterogeneity, longitudinal changes in molecular biomarkers and spe…

0301 basic medicineCancer ResearchCell typeMalignancylcsh:RC254-282ArticleTranscriptome03 medical and health sciencestranscriptomics0302 clinical medicineGliomaGene expressionmedicineneoplasmsTemozolomideglioblastoma stem cellsbusiness.industryglioblastomaMolecular diagnosticsmedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensnervous system diseases030104 developmental biologyOncology030220 oncology & carcinogenesisCancer researchgene expressionStem cellbusinesstarget anti-cancer therapymolecular pathwaysmedicine.drugrecurrent glioblastomaCancers
researchProduct

Common extracellular matrix regulation of myeloid cell activity in the bone marrow and tumor microenvironments

2017

The complex interaction between cells undergoing transformation and the various stromal and immunological cell components of the tumor microenvironment (TME) crucially influences cancer progression and diversification, as well as endowing clinical and prognostic significance. The immunosuppression characterizing the TME depends on the recruitment and activation of different cell types including regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. Less considered is the non-cellular component of the TME. Here, we focus on the extracellular matrix (ECM) regulatory activities that, within the TME, actively contribute to many aspects of tumor progression, acti…

0301 basic medicineCancer ResearchCell typeStromal cellMyeloidCarcinogenesisImmunologyBiology03 medical and health sciencesBone MarrowNeoplasmsmedicineImmune ToleranceImmunology and AllergyAnimalsHumansMyeloid-Derived Suppressor CellCarcinogenesiTumor microenvironmentAnimalMyeloid-Derived Suppressor CellsHematopoietic stem cellSPARCBone marrow nicheExtracellular matrixCell biology030104 developmental biologymedicine.anatomical_structureRegulatory myeloid suppressor cellOncologyTumor microenvironmentTumor progressionMyeloid-derived Suppressor CellBone marrow niche; Extracellular matrix; Regulatory myeloid suppressor cells; SPARC; Tumor microenvironment; Animals; Bone Marrow; Carcinogenesis; Extracellular Matrix; Humans; Immune Tolerance; Myeloid-Derived Suppressor Cells; Neoplasms; Tumor Escape; Tumor MicroenvironmentNeoplasmTumor Escapesense organsBone marrowHuman
researchProduct