Search results for "nucleation"
showing 10 items of 364 documents
Atomic layer deposition of Ru films from bis(2,5-dimethylpyrrolyl)ruthenium and oxygen
2012
Abstract Ru thin films were grown on hydrogen terminated Si, SiO 2 , Al 2 O 3 , HfO 2 , and TiO 2 surfaces by atomic layer deposition from bis(2,5-dimethylpyrrolyl)ruthenium precursor and oxygen. The 4–20 nm thick films on these surfaces consisted of nanocrystalline hexagonal metallic ruthenium, regardless of the deposition temperature. At the lowest temperatures examined, 250–255 °C, the growth of the Ru films was favored on silicon, compared to the growth on Al 2 O 3 , TiO 2 and HfO 2 . At higher temperatures the nucleation and growth of Ru became enhanced in particular on HfO 2 , compared to the process on silicon. At 320–325 °C, no growth occurred on Si–H and SiO 2 -covered silicon. Res…
Atomic Layer Deposition of Ruthenium Films from (Ethylcyclopentadienyl)(pyrrolyl)ruthenium and Oxygen
2011
Ru films were grown by atomic layer deposition in the temperature range of 275―350°C using (ethylcyclopentadienyl)(pyrrolyl)ruthenium and air or oxygen as precursors on HF-etched Si, SiO 2 , ZrO 2 , and TiN substrates. Conformal growth was examined on three-dimensional silicon substrates with 20:1 aspect ratio. ZrO 2 promoted the nucleation of Ru most efficiently compared to other substrates, but the films roughened quickly on ZrO 2 with increasing film thickness. The minimum number of cycles required to form continuous and conductive metal layers could be decreased by increasing the length of the oxygen pulse. In order to obtain well-conducting Ru films growth to thicknesses of at least 8―…
Effects of partial self-ordering of Si dots formed by chemical vapor deposition on the threshold voltage window distribution of Si nanocrystal memori…
2006
We study the role that the denuded zone around Si nanocrystals obtained by chemical vapor deposition plays on the fluctuations of the dot surface coverage. In fact, the capture mechanism of the silicon adatoms in the proximity of existing dots restricts the number of possible nucleation sites, the final dot size, and the dot position, thus driving the process toward partial self-order. We numerically evaluate the relative dispersion of surface coverage for several gate areas and compare the results to the fully random case. The coverage dispersion is related to the fluctuations from bit to bit of the threshold voltage window (Δ Vth) distribution of nanocrystal memories. The evaluations, com…
Au/CeO2-SBA-15 catalysts for CO oxidation: Effect of ceria loading on physic-chemical properties and catalytic performances
2012
In this work gold catalysts supported over SBA-15 with different CeO 2 loadings (5-30 wt%) were prepared, characterized by N 2 physisorption analyses, SAXS, XRD, STEM and XPS techniques and their catalytic performances were evaluated in the CO oxidation, chosen as reaction test. Over a selected catalyst, Au/CeO 2(20 wt%)-SBA-15, the effect of CO 2 and of the mixture (CO 2 + H 2O) on the CO conversion to CO 2 was also evaluated. Characterizations by SAXS, XRD, STEM and XPS were carried out on selected spent catalysts after CO oxidation. The results were discussed in terms of relationship between morphological, structural, electronic and catalytic properties as a function of the ceria loading…
Insights into localized manipulation of organogel-related microcrystalline spherulite formation
2015
Abstract The formation processes of microcrystalline spherulitic fiber systems related to bile acid amides were determined to include dominant interface-related aspects, the role of which were studied in terms of potential manipulation and increased control over the overall structure of the networks. The nucleation and growth properties and aggregation of two lithocholyl amide derivatives were studied in several organic solvents using thermomicroscopy, as well as thermal control at macroscopic level. Nucleation/crystallization at interfaces was observed to act as the main route for the formation of microcrystalline fibers/solids in six gelator–solvent systems, in which spherulite formation …
Solvent hydrodynamics speed up crystal nucleation in suspensions of hard spheres
2014
We present a computer simulation study on the crystal nucleation process in suspensions of hard spheres, fully taking into account the solvent hydrodynamics. If the dynamics of collodial crystallization were purely diffusive, the crystal nucleation rate densities would drop as the inverse of the solvent viscosity. However, we observe that the nucleation rate densities do not scale in this way, but are enhanced at high viscosities. This effect might explain the large discrepancy between the nuclation rate densities obtained by simulation and experiment that have reported in the literature so far.
Precursor-mediated crystallization process in suspensions of hard spheres.
2010
We report on a large scale computer simulation study of crystal nucleation in hard spheres. Through a combined analysis of real and reciprocal space data, a picture of a two-step crystallization process is supported: First dense, amorphous clusters form which then act as precursors for the nucleation of well-ordered crystallites. This kind of crystallization process has been previously observed in systems that interact via potentials that have an attractive as well as a repulsive part, most prominently in protein solutions. In this context the effect has been attributed to the presence of metastable fluid-fluid demixing. Our simulations, however, show that a purely repulsive system (that ha…
Classical nucleation theory for the crystallization kinetics in sheared liquids
2019
While statistical mechanics provides a comprehensive framework for the understanding of equilibrium phase behavior, predicting the kinetics of phase transformations remains a challenge. Classical nucleation theory (CNT) provides a thermodynamic framework to relate the nucleation rate to thermodynamic quantities such as pressure difference and interfacial tension through the nucleation work necessary to spawn critical nuclei. However, it remains unclear whether such an approach can be extended to the crystallization of driven melts that are subjected to mechanical stresses and flows. Here, we demonstrate numerically for hard spheres that the impact of simple shear on the crystallization rate…
Do the contact angle and line tension of surface-attached droplets depend on the radius of curvature?
2018
Results from Monte Carlo simulations of wall-attached droplets in the three-dimensional Ising lattice gas model and in a symmetric binary Lennard-Jones fluid, confined by antisymmetric walls, are analyzed, with the aim to estimate the dependence of the contact angle $(\Theta)$ on the droplet radius $(R)$ of curvature. Sphere-cap shape of the wall-attached droplets is assumed throughout. An approach, based purely on "thermodynamic" observables, e.g., chemical potential, excess density due to the droplet, etc., is used, to avoid ambiguities in the decision which particles belong (or do not belong, respectively) to the droplet. It is found that the results are compatible with a variation $[\Th…
Selective Synthesis of Monodisperse CoO Nanooctahedra as Catalysts for Electrochemical Water Oxidation
2020
Thermal decomposition is a promising route for the synthesis of metal oxide nanoparticles because size and morphology can be tuned by minute control of the reaction variables. We synthesized CoO nanooctahedra with diameters of ∼48 nm and a narrow size distribution. Full control over nanoparticle size and morphology could be obtained by controlling the reaction time, surfactant ratio, and reactant concentrations. We show that the particle size does not increase monotonically with time or surfactant concentration but passes through minima or maxima. We unravel the critical role of the surfactants in nucleation and growth and rationalize the observed experimental trends in accordance with simu…