Search results for "numerical"
showing 10 items of 2002 documents
Existence of dynamical low-rank approximations to parabolic problems
2021
The existence and uniqueness of weak solutions to dynamical low-rank evolution problems for parabolic partial differential equations in two spatial dimensions is shown, covering also non-diagonal diffusion in the elliptic part. The proof is based on a variational time-stepping scheme on the low-rank manifold. Moreover, this scheme is shown to be closely related to practical methods for computing such low-rank evolutions.
Fixed point theorems for fuzzy mappings and applications to ordinary fuzzy differential equations
2014
Abstract Ran and Reurings (Proc. Am. Math. Soc. 132(5):1435-1443, 2004) proved an analog of the Banach contraction principle in metric spaces endowed with a partial order and discussed some applications to matrix equations. The main novelty in the paper of Ran and Reurings involved combining the ideas in the contraction principle with those in the monotone iterative technique. Motivated by this, we present some common fixed point results for a pair of fuzzy mappings satisfying an almost generalized contractive condition in partially ordered complete metric spaces. Also we give some examples and an application to illustrate our results. MSC:46S40, 47H10, 34A70, 54E50.
Absolute and monotonic norms
1961
Iterationsverfahren höherer Ordnung in Banach-Räumen
1969
The Newton process for operator equations in say a linear normed complete space converges under certain hypothesis about the Frechet-derivatives of the operator with at least the order two. There are different ways to improve this Newton process. For instance you obtain a process of order three if you add a correction element containing the second Frechet-derivative of the operator [1]. In the following note we will generalize this idea. In a recursive manner -- by adding higher derivatives -- we will construct iterative processes of any orderk (k > 1). A general theorem due toCollatz provides us error estimates for this processes. Last we will illustrate the processes by several examples.
Indefinite integrals of special functions from integrating factors
2019
Some general integrals are presented which were obtained from two integrating factors f(x) and fˆ(x) for the first two and last two terms, respectively, of the second-order linear ordinary differen...
Numerical evaluation of multiple polylogarithms
2004
Multiple polylogarithms appear in analytic calculations of higher order corrections in quantum field theory. In this article we study the numerical evaluation of multiple polylogarithms. We provide algorithms, which allow the evaluation for arbitrary complex arguments and without any restriction on the weight. We have implemented these algorithms with arbitrary precision arithmetic in C++ within the GiNaC framework.
A note on multiple summing operators and applications
2018
We prove a new result on multiple summing operators and, among other results and applications, we provide a new extension of Littlewood’s 4 / 3 inequality to m-linear forms.
New Families of Symplectic Runge-Kutta-Nyström Integration Methods
2001
We present new 6-th and 8-th order explicit symplectic Runge-Kutta-Nystrom methods for Hamiltonian systems which are more efficient than other previously known algorithms. The methods use the processing technique and non-trivial flows associated with different elements of the Lie algebra involved in the problem. Both the processor and the kernel are compositions of explicitly computable maps.
Periodic Polynomial Splines
2018
In this chapter, the spaces of periodic polynomial splines and the Spline Harmonic Analysis (SHA) in these spaces are briefly outlined. The stuff of this chapter is used for the design of periodic discrete-time splines and discrete-time-spline-based wavelets and wavelet packets. For a detailed description of the subject we refer to (Averbuch, Neittaanmaki and Zheludev, Spline and Spline Wavelet Methods with Applications to Signal and Image Processing, Springer, Berlin, 2014) [1]. Periodic polynomial splines provide an example of mixed discrete-continuous circular convolution.
An algebraic multigrid based shifted-Laplacian preconditioner for the Helmholtz equation
2007
A preconditioner defined by an algebraic multigrid cycle for a damped Helmholtz operator is proposed for the Helmholtz equation. This approach is well suited for acoustic scattering problems in complicated computational domains and with varying material properties. The spectral properties of the preconditioned systems and the convergence of the GMRES method are studied with linear, quadratic, and cubic finite element discretizations. Numerical experiments are performed with two-dimensional problems describing acoustic scattering in a cross-section of a car cabin and in a layered medium. Asymptotically the number of iterations grows linearly with respect to the frequency while for lower freq…