Search results for "obol"
showing 10 items of 228 documents
Absolutely continuous functions with values in a Banach space
2017
Abstract Let Ω be an open subset of R n , n > 1 , and let X be a Banach space. We prove that α-absolutely continuous functions f : Ω → X are continuous and differentiable (in some sense) almost everywhere in Ω.
Characterizations of Orlicz-Sobolev Spaces by Means of Generalized Orlicz-Poincaré Inequalities
2012
Let Φ be anN-function. We show that a functionu∈LΦ(ℝn)belongs to the Orlicz-Sobolev spaceW1,Φ(ℝn)if and only if it satisfies the (generalized) Φ-Poincaré inequality. Under more restrictive assumptions on Φ, an analog of the result holds in a general metric measure space setting.
Dirichlet Forms, Poincaré Inequalities, and the Sobolev Spaces of Korevaar and Schoen
2004
We answer a question of Jost on the validity of Poincare inequalities for metric space-valued functions in a Dirichlet domain. We also investigate the relationship between Dirichlet domains and the Sobolev-type spaces introduced by Korevaar and Schoen.
Generalized Lebesgue points for Sobolev functions
2017
In this article, we show that a function $f\in M^{s,p}(X),$ $0<s\leq 1,$ $0<p<1,$ where $X$ is a doubling metric measure space, has generalized Lebesgue points outside a set of $\mathcal{H}^h$-Hausdorff measure zero for a suitable gauge function $h.$
Sobolev embeddings, extensions and measure density condition
2008
AbstractThere are two main results in the paper. In the first one, Theorem 1, we prove that if the Sobolev embedding theorem holds in Ω, in any of all the possible cases, then Ω satisfies the measure density condition. The second main result, Theorem 5, provides several characterizations of the Wm,p-extension domains for 1<p<∞. As a corollary we prove that the property of being a W1,p-extension domain, 1<p⩽∞, is invariant under bi-Lipschitz mappings, Theorem 8.
Sobolev classes of Banach space-valued functions and quasiconformal mappings
2001
We give a definition for the class of Sobolev functions from a metric measure space into a Banach space. We give various characterizations of Sobolev classes and study the absolute continuity in measure of Sobolev mappings in the “borderline case”. We show under rather weak assumptions on the source space that quasisymmetric homeomorphisms belong to a Sobolev space of borderline degree; in particular, they are absolutely continuous. This leads to an analytic characterization of quasiconformal mappings between Ahlfors regular Loewner spaces akin to the classical Euclidean situation. As a consequence, we deduce that quasisymmetric maps respect the Cheeger differentials of Lipschitz functions …
Functional Calculus and Fredholm Criteria for Boundary Value Problems on Noncompact Manifolds
1992
A Boutet de Monvel type calculus is developed for boundary value problems on (possibly) noncompact manifolds. It is based on a class of weighted symbols and Sobolev spaces. If the underlying manifold is compact, one recovers the standard calculus. The following is proven:
Maximal function estimates and self-improvement results for Poincaré inequalities
2018
Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces. peerReviewed
Quasihyperbolic boundary conditions and Poincaré domains
2002
We prove that a domain in ${\Bbb R}^n$ whose quasihyperbolic metric satisfies a logarithmic growth condition with coefficient $\beta\le 1$ is a (q,p)-\Poincare domain for all p and q satisfying $p\in[1,\infty)\cap(n-n\beta,n)$ and $q\in[p,\beta p^*)$ , where $p^*=np/(n-p)$ denotes the Sobolev conjugate exponent. An elementary example shows that the given ranges for p and q are sharp. The proof makes use of estimates for a variational capacity. When p=2 we give an application to the solvability of the Neumann problem on domains with irregular boundaries. We also discuss the relationship between this growth condition on the quasihyperbolic metric and the s-John condition.
Stochastic differential equations with coefficients in Sobolev spaces
2010
We consider It\^o SDE $\d X_t=\sum_{j=1}^m A_j(X_t) \d w_t^j + A_0(X_t) \d t$ on $\R^d$. The diffusion coefficients $A_1,..., A_m$ are supposed to be in the Sobolev space $W_\text{loc}^{1,p} (\R^d)$ with $p>d$, and to have linear growth; for the drift coefficient $A_0$, we consider two cases: (i) $A_0$ is continuous whose distributional divergence $\delta(A_0)$ w.r.t. the Gaussian measure $\gamma_d$ exists, (ii) $A_0$ has the Sobolev regularity $W_\text{loc}^{1,p'}$ for some $p'>1$. Assume $\int_{\R^d} \exp\big[\lambda_0\bigl(|\delta(A_0)| + \sum_{j=1}^m (|\delta(A_j)|^2 +|\nabla A_j|^2)\bigr)\big] \d\gamma_d0$, in the case (i), if the pathwise uniqueness of solutions holds, then the push-f…