Search results for "onde"

showing 10 items of 15565 documents

Arsenic diffusion in relaxedSi1−xGex

2003

The intrinsic As diffusion properties have been determined in relaxed ${\mathrm{Si}}_{1\ensuremath{-}x}{\mathrm{Ge}}_{x}$ epilayers. The properties were studied as a function of composition x for the full range of materials with $x=0,$ 0.20, 0.35, 0.50, 0.65, 0.8, and 1. The activation enthalpy ${E}_{a}$ was found to drop systematically from 3.8 eV $(x=0)$ to 2.4 eV $(x=1).$ Comparisons with other impurity atom- and self-diffusion results in Si, Ge, and SiGe show that both interstitials and vacancies contribute as diffusion vehicles in the composition range $0l~xl~0.35$ and that vacancy mechanism dominates diffusion in the composition range $0.35lxl~1.$

010302 applied physicsMaterials scienceCondensed matter physicschemistryImpurityVacancy defect0103 physical sciencesEnthalpychemistry.chemical_elementAtomic physics010306 general physics01 natural sciencesArsenicPhysical Review B
researchProduct

The influence of Cr and Ni doping on the microstructure of oxygen containing diamond-like carbon films

2021

Abstract Non-hydrogenated diamond-like carbon (DLC) films doped with metals and oxygen were deposited by direct current magnetron sputtering. The influence of chromium and nickel on the surface morphology, elemental composition, bonding structure, adhesion force, optical transmittance and nanohardness of the films was characterized by atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), multi-wavelength Raman spectroscopy, UV–VIS–NIR spectrophotometry and nanoindenter. The surface roughness was reduced with the addition of Cr (7.4 at. %) or Ni (8.9 at. %) into DLC films. The EDX measurements indicated that the addition of Cr increased the oxygen content by ~37%, while …

010302 applied physicsMaterials scienceDiamond-like carbonDopingAnalytical chemistrychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesSurfaces Coatings and FilmsChromiumNickelsymbols.namesakechemistry0103 physical sciencessymbolsSurface roughness0210 nano-technologyRaman spectroscopyInstrumentationCarbonVacuum
researchProduct

The effects of the additive of Eu ions on elastic and electric properties of BaTiO3ceramics

2016

ABSTRACTThe BaTiO3 and BaTiO3+X%wt.Eu2O3 (X = 1, 2, 3) ceramics were prepared by a solid phase reaction. The structural and morphology studies were carried out by means of an X-ray diffraction technique and scanning electron microscopy, respectively. Elastic moduli were determined with the use of an ultrasonic method. The dielectric permittivity (ϵ′) and tanδ as a function of composition and temperature were investigated. The increasing concentration of Eu ions leads to a slight shift of the Curie temperature and changes the characteristics of ϵ′ and tanδ. The structural, mechanical and dielectric properties of the BTEX ceramics were discussed in terms of microstructure and dopants contents.

010302 applied physicsMaterials scienceDopantScanning electron microscopeMineralogy02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesElectronic Optical and Magnetic MaterialsIonControl and Systems Engineeringvisual_art0103 physical sciencesMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumCurie temperatureCeramicElectrical and Electronic EngineeringComposite material0210 nano-technologyElastic modulusIntegrated Ferroelectrics
researchProduct

SrTiO3-doping effect on dielectric and ferroelectric behavior of Na0.5Bi0.5 TiO3 ceramics

2018

Lead-free (Na0.5Bi0.5)1-xSrxTiO3 ceramics (x = 0–0.04) were synthesized by a conventional mixed-oxide technique. The microstructure study showed a dense structure, in good agreement with that of ab...

010302 applied physicsMaterials scienceDoping02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesFerroelectricityElectronic Optical and Magnetic Materialsvisual_art0103 physical sciencesvisual_art.visual_art_mediumCeramicComposite material0210 nano-technologyFerroelectrics
researchProduct

Preparation and dielectric properties of (Na 0.5 K 0.5 )NbO 3 ceramics with ZnO and CdO addition

2019

The sintering conditions, phase structure, and electrical properties of the ZnO and CdO doped (Na0.5K0.5)NbO3 (NKN) ceramics were investigated and discussed. All the samples were prepared by a solid state reaction method. The addition of 1 wt% CdO and ZnO as a sintering aid increases the density and lowering the sintering temperature. XRD analysis indicated perovskite structure with monoclinic symmetry. The investigated samples are good quality, the grains are well shaped without a glassy phase. The results of dielectric measurements revealed, that the dielectric properties of NKN based ceramics are stable in the wide temperature range.

010302 applied physicsMaterials scienceDopingSintering02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialssodium potassium niobateChemical engineeringControl and Systems Engineeringdielectric propertiesvisual_artPhase (matter)0103 physical sciencesMaterials ChemistryCeramics and Compositesvisual_art.visual_art_medium:NATURAL SCIENCES:Physics [Research Subject Categories]CeramicElectrical and Electronic Engineering0210 nano-technologySolid state sinteringIntegrated Ferroelectrics
researchProduct

Influence of magnetization on the applied magnetic field in various AMR regenerators

2017

International audience; The aim of this work is to assess the influence of a magnetic sample on the applied magnetic field inside the air gap of a magnetic circuit. Different magnetic sources including an electromagnet, a permanent magnet in a soft ferromagnetic toroidal yoke, as well as 2D and 3D Halbach cylinders are considered, using a numerical model. Gadolinium is chosen as magnetic material for the sample, due to its strong magnetocaloric properties and its wide use in magnetic refrigeration prototypes. We find that using uniform theoretical demagnetizing factors for cylinders or spheres results in a deviation of less than 2% in the calculation of internal magnetic fields at temperatu…

010302 applied physicsMaterials scienceElectromagnetMagnetic domainMagnetic energyCondensed matter physics[SPI.NRJ]Engineering Sciences [physics]/Electric powerDemagnetizing fieldGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences[SPI.AUTO]Engineering Sciences [physics]/Automaticlaw.inventionCondensed Matter::Materials ScienceMagnetizationRemanencelaw0103 physical sciences[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph]Magnetic pressure[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]Single domain0210 nano-technologyJournal of Applied Physics
researchProduct

Structural characterization of TiO2/TiN O (δ-doping) heterostructures on (1 1 0)TiO2 substrates

2003

Abstract TiO2/TiNxOy δ-doping structures were grown on the top of (1 1 0)TiO2 rutile substrates by low pressure metal-organic vapor phase epitaxy (LP-MOVPE) technique at 750 °C. The samples were analyzed by high resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS) and X-ray diffraction techniques (rocking curves and φ-scans). The presence of satellites in the (1 1 0)TiO2 rocking curve revealed the epitaxial growth of 10 period δ-doping structures. The thickness of the TiO2 layers, 84 nm, was deduced from the satellites period. HRTEM observations showed around 1.5 nm thick δ-doping layers, where the presence of nitrogen was detected by EELS. The analy…

010302 applied physicsMaterials scienceElectron energy loss spectroscopyGeneral Physics and Astronomy02 engineering and technologySurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsEpitaxy01 natural sciencesElectron spectroscopySurfaces Coatings and FilmsCrystallographySurface coatingTransmission electron microscopy0103 physical sciencesX-ray crystallography[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Metalorganic vapour phase epitaxy0210 nano-technologyHigh-resolution transmission electron microscopyComputingMilieux_MISCELLANEOUS
researchProduct

OPTIMIZATION OF A NOVEL MAGNETO-RHEOLOGICAL DEVICE WITH PERMANENT MAGNETS

2017

In this paper a novel evolutionary algorithm is used for the optimization of the performance of a magnetorheological (MR) device, capable to transmit torque between two shafts and powered by a system of Permanent Magnets (PMs). The stochastic, evolutionary, global optimization algorithm is based on a modified version of the self-organizing map. It uses a dedicated simplified analytical model of the device, developed in order to obtain a fast and accurate evaluation of the torque. Then, by means this model, the cost function to find the optimal parameters of the device is defined. Once the optimal parameters are identified, the performance of the proposed device is simulated by means of a FE…

010302 applied physicsMaterials scienceElectronic Optical and Magnetic Material02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsMagneto rheologicalMagnet0103 physical sciencesComposite material0210 nano-technologyProgress In Electromagnetics Research M
researchProduct

How activator ion concentration affects spectroscopic properties on Ba4Y3F17: Er3+, Yb3+, a new perspective up-conversion material

2018

Abstract Ba4Y3F17 with Er3+ and Yb3+, a promising material for up-conversion luminescence, was synthesized. Excellent isomorphic capacity was detected. Low-temperature measurements show that erbium ions are incorporated in multiple lattice positions, which is inconsistent with the current model of Ba4Y3F17 crystal lattice structure. Activator ion concentration has a different impact on 4S3/2 and 4F9/2, states (for the green and red luminescence, respectively) depopulation. Energy transfer from Er3+ 4S3/2 state to Yb3+ is observed even at low temperature (15 K) while Er-Er cross-relaxation is observed from 120 K and above. Yb3+ concentration has a great impact to red-to-green up-conversion l…

010302 applied physicsMaterials scienceEnergy transferBiophysicsAnalytical chemistryQuantum yield02 engineering and technologyGeneral ChemistryCrystal structure021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesBiochemistryAtomic and Molecular Physics and OpticsIonLattice (order)0103 physical sciencesActivator (phosphor)Up conversion0210 nano-technologyLuminescenceJournal of Luminescence
researchProduct

EBSD, XRD and SRS characterization of a casting Al-7wt%Si alloy processed by equal channel angular extrusion: Dislocation density evaluation

2019

Abstract Aluminum‑silicon (Al Si) alloys of high silicon contents are composite materials; they are used whenever high casting properties are required. They are slightly ductile below 8wt%Si. An increase in ductility can be obtained by refining Si-crystals in elaboration or by a further hot working. In the present work, an Al-7wt%Si alloy was processed by Equal Channel Angular Extrusion (ECAE) at temperatures 20 °C and 160 °C up to three passes. The die was formed by two cylindrical channels with characteristic angles Φ = 110° and Ψ = 0. EBSD, X ray diffraction (XRD) and Strain Rate Sensitivity (SRS) were used to characterize the microstructure and the mechanical properties. High levels of …

010302 applied physicsMaterials scienceEqual channel angular extrusionMechanical Engineering02 engineering and technologyStrain rate021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesCastingHot workingMechanics of Materials0103 physical sciencesGeneral Materials ScienceComposite materialDislocation0210 nano-technologyDuctilityElectron backscatter diffractionMaterials Characterization
researchProduct