Search results for "path"

showing 10 items of 15327 documents

Plastidial Glyceraldehyde-3-Phosphate Dehydrogenase Deficiency Leads to Altered Root Development and Affects the Sugar and Amino Acid Balance in Arab…

2009

[EN] Glycolysis is a central metabolic pathway that, in plants, occurs in both the cytosol and the plastids. The glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate with concomitant reduction of NAD(+) to NADH. Both cytosolic (GAPCs) and plastidial (GAPCps) GAPDH activities have been described. However, the in vivo functions of the plastidial isoforms remain unresolved. In this work, we have identified two Arabidopsis (Arabidopsis thaliana) chloroplast/plastid-localized GAPDH isoforms (GAPCp1 and GAPCp2). gapcp double mutants display a drastic phenotype of arrested root development, dwarfism, and steri…

0106 biological sciencesPhysiologyDehydrogenaseSerine biosynthesisPlant Science01 natural sciencesSerine03 medical and health scienceschemistry.chemical_compoundBiosynthesisArabidopsisThalianaBIOQUIMICA Y BIOLOGIA MOLECULARGeneticsArabidopsis thalianaGene-expressionGlyceraldehyde 3-phosphate dehydrogenase030304 developmental biology2. Zero hunger0303 health sciencesCrucial rolebiologybiology.organism_classificationIn-source leavesMolecular characterizationMetabolic pathwayMetabolismBiochemistrychemistryOxidative stressbiology.proteinNAD+ kinaseEscherichia-ColiPathway010606 plant biology & botanyPlant Physiology
researchProduct

An STE12 gene identified in the mycorrhizal fungus Glomus intraradices restores infectivity of a hemibiotrophic plant pathogen

2009

International audience; * • Mechanisms of root penetration by arbuscular mycorrhizal (AM) fungi are unknown and investigations are hampered by the lack of transformation systems for these unculturable obligate biotrophs. Early steps of host infection by hemibiotrophic fungal phytopathogens, sharing common features with those of AM fungal colonization, depend on the transcription factor STE12. * • Using degenerated primers and rapid amplification of cDNA ends, we isolated the full-length cDNA of an STE12-like gene, GintSTE, from Glomus intraradices and profiled GintSTE expression by real-time and in situ RT-PCR. GintSTE activity and function were investigated by heterologous complementation …

0106 biological sciencesPhysiologyGLOMUS INTRARADICESGenes FungalMolecular Sequence DataMutantGerminationMYCORHIZES ARBUSCULAIRESSaccharomyces cerevisiaePlant SciencePlant Roots01 natural sciencesMicrobiologyFungal ProteinsGlomeromycota03 medical and health sciencesHOST PENETRATIONFungal StructuresGene Expression Regulation FungalMycorrhizaeSequence Homology Nucleic AcidMedicago truncatulaColletotrichumAmino Acid SequenceRNA MessengerTRANSCRIPTION FACTORMycorrhizaSTE12030304 developmental biologyPhaseolus0303 health sciencesFungal proteinbiologyMYCORRHIZAReverse Transcriptase Polymerase Chain ReactionColletotrichum lindemuthianumGene Expression Profilingfungifood and beveragesSpores Fungalbiology.organism_classificationMedicago truncatula[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyColletotrichumMutationHEMIBIOTROPHIC PATHOGENSequence AlignmentGLOMEROMYCOTA010606 plant biology & botany
researchProduct

Gene flow and population admixture as the primary post-invasion processes in common ragweed (Ambrosia artemisiifolia) populations in France

2010

*An improved inference of the evolutionary history of invasive species may be achieved by analyzing the genetic variation and population differentiation of recently established populations and their ancestral (historical) populations. Employing this approach, we investigated the role of gene flow in the post-invasion evolution of common ragweed (Ambrosia artemisiifolia). *Using eight microsatellite loci, we compared genetic diversity and structure among nine pairs of historical and recent populations in France. Historical populations were reconstructed from herbarium specimens dated from the late 19th to early 20th century, whereas recent populations were collected within the last 5 yr. *Re…

0106 biological sciencesPhysiologyHISTORICAL POPULATIONSPopulation DynamicsPopulationPopulation geneticsPlant ScienceBiology010603 evolutionary biology01 natural sciencesGene flow03 medical and health sciencesHERBARIUM SPECIMENGenetic variationGENE FLOWCluster AnalysiseducationPhylogenyAmbrosia artemisiifoliaPOPULATION HISTORIQUE030304 developmental biologyPrincipal Component Analysis0303 health scienceseducation.field_of_studyGenetic diversityGeographyEcologyGenetic Variation[ SDV.BV.PEP ] Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyBayes TheoremGene Pool15. Life on landbiology.organism_classificationINVASIVE SPECIESESPECES ENVAHISSANTES[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyAMBROSIA ARTEMISIIFOLIA(COMMON RAGWEED)Genetic distanceEvolutionary biologyPOPULATION ADMIXTUREFranceGene poolAmbrosiaPOST-INVASION PROCESS
researchProduct

Glutathione deficiency of the Arabidopsis mutant pad2-1 affects oxidative stress-related events, defense gene expression and hypersensitive response

2011

L'article original est publié par The American Society of Plant Biologists; International audience; The Arabidopsis (Arabidopsis thaliana) phytoalexin-deficient mutant pad2-1 displays enhanced susceptibility to a broad range of pathogens and herbivorous insects that correlates with deficiencies in the production of camalexin, indole glucosinolates, and salicylic acid (SA). The pad2-1 mutation is localized in the GLUTAMATE-CYSTEINE LIGASE (GCL) gene encoding the first enzyme of glutathione biosynthesis. While pad2-1 glutathione deficiency is not caused by a decrease in GCL transcripts, analysis of GCL protein level revealed that pad2-1 plants contained only 48% of the wild-type protein amoun…

0106 biological sciencesPhysiologyMutantGlutathione reductaseArabidopsisOligosaccharidesPlant Science01 natural scienceschemistry.chemical_compoundAnti-Infective AgentsGene Expression Regulation PlantCamalexinArabidopsis thaliana0303 health sciencesGlutathioneBiochemistryHost-Pathogen InteractionsDisease SusceptibilitySalicylic AcidOxidation-ReductionSignal TransductionHypersensitive responsePhytophthoradisease resistanceBiologyNitric Oxiderespiratory burst oxidase homolog d[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health sciencesStress PhysiologicalGeneticsPlants Interacting with Other Organismsglutathione reductase030304 developmental biologyPlant DiseasesArabidopsis ProteinsCell MembraneWild typeGlutathioneHydrogen Peroxidebiology.organism_classificationMolecular biologyPlant LeavesOxidative StresschemistryMutationglutathione-s-transferaseIsochorismate synthasebiology.proteinglutamate-cysteine ligaseReactive Oxygen Species010606 plant biology & botany
researchProduct

Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum.

2014

International audience; Diatoms constitute a major phylum of phytoplankton biodiversity in ocean water and freshwater ecosystems. They are known to respond to some chemical variations of the environment by the accumulation of triacylglycerol, but the relative changes occurring in membrane glycerolipids have not yet been studied. Our goal was first to define a reference for the glycerolipidome of the marine model diatom Phaeodactylum tricornutum, a necessary prerequisite to characterize and dissect the lipid metabolic routes that are orchestrated and regulated to build up each subcellular membrane compartment. By combining multiple analytical techniques, we determined the glycerolipid profil…

0106 biological sciencesPhysiologyPlant ScienceThylakoids01 natural sciencesPhaeodactylum tricornutumTranscriptomeMGDGNutrientnutrient starvationLipids metabolismSettore BIO/04 - Fisiologia VegetaleDigalactosyldiacylglycerolPhospholipids0303 health sciencesbiologyNitrogen starvationmicroalgaeMonogalactosyldiacyglycerolPhosphorusArticlesAdaptation PhysiologicalBiochemistryThylakoidSulfoquinovosyldiacylglycerollipids (amino acids peptides and proteins)DGDGNitrogenchemistry.chemical_elementlipidsMembrane Lipids03 medical and health sciencesSQDG[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyGenetics[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology14. Life underwaterPhaeodactylum tricornutumTriglycerides030304 developmental biologyDiatomsMembranesGene Expression ProfilingPhosphorusfungiPhosphorus starvationGlycerolipidsLipid metabolismmetabolic pathwaybiology.organism_classificationMetabolic pathwayPhosphatidylcholineDiatomchemistryPhytoplanktonLipidomics010606 plant biology & botany
researchProduct

Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant g…

2002

Summary • The ability of fluorescent pseudomonads and glomalean fungi to promote plant growth has been reported many times. However, little is known of their effects on root morphogenesis. Growth and root morphogenesis were compared in tomato ( Lycopersicon esculentum ) plants inoculated or not with a model strain of Pseudomonas fluorescens (A6RI) or with the arbuscular mycorrhizal fungus Glomus mosseae (BEG12). • Plants were cultivated in a sandy-loam soil mixed with sand at two different ratios (2 : 1 and 1 : 2), in gnotobiotic conditions. Plant growth was evaluated by measuring root and shoot fresh weight, and various morphometric parameters were compared. • Growth of control plants was …

0106 biological sciencesPhysiologyPseudomonas fluorescensPlant ScienceRoot systemRhizobacteria01 natural sciencesLycopersiconBotanyMycorrhizaComputingMilieux_MISCELLANEOUS[SDV.BV.PEP] Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyGlomusMORPHOGENESE2. Zero hungerbiologyfungifood and beverages04 agricultural and veterinary sciencesbiology.organism_classification[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyShoot040103 agronomy & agriculture0401 agriculture forestry and fisheriesSoil fertility010606 plant biology & botanyNew Phytologist
researchProduct

Elicitor and resistance-inducing activities of -1,4 cellodextrins in grapevine, comparison with -1,3 glucans and -1,4 oligogalacturonides

2007

Cellodextrins (CD), water-soluble derivatives of cellulose composed of beta-1,4 glucoside residues, have been shown to induce a variety of defence responses in grapevine (Vitis vinifera L.) cells. The larger oligomers of CD rapidly induced transient generation of H2O2 and elevation in free cytosolic calcium, followed by a differential expression of genes encoding key enzymes of the phenylpropanoid pathway and pathogenesis-related (PR) proteins as well as stimulation of chitinase and beta-1,3 glucanase activities. Most of these defence reactions were also induced by linear beta-1,3 glucans (betaGlu) and alpha-1,4 oligogalacturonides (OGA) of different degree of polymerization (DP), but the i…

0106 biological sciencesPhysiology[SDV]Life Sciences [q-bio]Plant ScienceBiology01 natural sciences03 medical and health sciencesGene expressionBotanyGRAPEVINE[SDV.BV]Life Sciences [q-bio]/Vegetal Biology030304 developmental biologychemistry.chemical_classification0303 health sciencesPhenylpropanoidINDUCED RESISTANCEOligosaccharideGlucanaseElicitor[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyCytosolEnzymechemistryBiochemistryChitinasebiology.proteinCELLODEXTRINSDEFENCE RESPONSES010606 plant biology & botany
researchProduct

Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions.

2009

To gain further insight into the role of the plant genome in arbuscular mycorrhiza (AM) establishment, we investigated whether symbiosis-related plant genes affect fungal gene expression in germinating spores and at the appressoria stage of root interactions. Glomus intraradices genes were identified in expressed sequence tag libraries of mycorrhizal Medicago truncatula roots by in silico expression analyses. Transcripts of a subset of genes, with predicted functions in transcription, protein synthesis, primary or secondary metabolism, or of unknown function, were monitored in spores and germinating spores and during interactions with roots of wild-type or mycorrhiza-defective (Myc–) mutan…

0106 biological sciencesPhysiologychampignon phytopathogèneBiologyGenes Plant01 natural sciencesPlant Root NodulationPlant RootsMicrobiology03 medical and health sciencesGene Expression Regulation PlantARBUSCULAR MYCORRHIZAL FUNGUSMycorrhizaeGene expressionMedicago truncatulaSpore germination[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMycorrhizaSymbiosisGene030304 developmental biologyPlant Proteins0303 health sciencesAppressoriumExpressed sequence taggénomegènefungifood and beveragesGeneral Medicine15. Life on landbiology.organism_classificationMedicago truncatulaArbuscular mycorrhizaracinesymbioseAgronomy and Crop Science010606 plant biology & botanyMolecular plant-microbe interactions : MPMI
researchProduct

Emergence and growth of hybrids between Brassica napus and Raphanus raphanistrum.

2003

Summary • Risk assessment studies of transgenic crops have recently brought evidence of a low spontaneous hybridization frequency of Brassica napus with Raphanus raphanistrum. The fate of the first generation hybrids is crucial to determine the initial rate of spread of transgenes. • This work aims to compare the fitness components of parents and F1 hybrids at the first step of the life cycle. The ability to emerge, establish seedling, cover the soil and develop adult plant was examined in controlled and field conditions, alone or in competition. • The F1 hybrids showed a lower seedling emergence, a significant delay of emergence, and a lower survival than for both parents. Rosette diameter…

0106 biological sciencesPhysiologymedia_common.quotation_subjectBrassicaPlant ScienceGenetically modified cropsRaphanus raphanistrum010603 evolutionary biology01 natural sciencesCompetition (biology)Gene flowBotanyCOLZAComputingMilieux_MISCELLANEOUS[SDV.BV.PEP] Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyHybridmedia_common2. Zero hungerbiologyfood and beveragesbiology.organism_classification[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyAgronomySeedlingWeed010606 plant biology & botanyThe New phytologistReferences
researchProduct

Nuclear protein kinases: still enigmatic components in plant cell signalling

2010

International audience; Plants constantly face changing conditions in their environment. Unravelling the transduction mechanisms from signal perception at the plasma membrane level down to gene expression in the nucleus is a fascinating challenge. Protein phosphorylation, catalysed by protein kinases, is one of the major posttranslational modifications involved in the specificity, kinetic(s) and intensity of a signal transduction pathway. Although commonly assumed, the involvement of nuclear protein kinases in signal transduction is often poorly characterized. In particular, both their regulation and mode of action remain to be elucidated and may lead to the unveiling of new original mechan…

0106 biological sciencesPhysiologyp38 mitogen-activated protein kinasesPROTEIN KINASENUCLEAR TRANSLOCATIONPlant ScienceBiology01 natural sciencesSecond Messenger Systems03 medical and health sciencesNCK1Protein phosphorylationNuclear proteinNUCLEUS030304 developmental biologyPROTEIN (DE)PHOSPHORYLATION0303 health sciencesGRB10SIGNAL TRANSDUCTIONNuclear ProteinsAutophagy-related protein 13PlantsCell biology[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyBiochemistryCDC37Mitogen-activated protein kinasebiology.proteinProtein Kinases010606 plant biology & botany
researchProduct