Search results for "peptidomimetics"

showing 10 items of 27 documents

Redox-responsive organometallic foldamers from ferrocene amino acid: Solid-phase synthesis, secondary structure and mixed-valence properties

2011

Oligoferrocenes Fmoc-Fca(n)-OMe (n=3-5) are assembled in a stepwise precise manner from Fmoc-protected ferrocene amino acid Fmoc-Fca-OH (H-Fca-OH = 1-amino-1'-ferrocene carboxylic acid; Fmoc = 9-fluorenylmethyloxycarbonyl) via amide bonds on solid supports by sequential Fmoc deprotection, acid activation and coupling steps. The resulting well-defined oligomers form ordered zigzag structures in THF solution with characteristic hydrogen bonding patterns. Electrochemical experiments reveal sequential oxidations of the individual ferrocene units in these peptides giving mixed-valent cations. Optical intervalence electron transfer is detected by intervalence transitions in the near-IR.

Models MolecularMetallocenesStereochemistryCarboxylic acidProtein Structure SecondaryInorganic Chemistrychemistry.chemical_compoundElectron transferSolid-phase synthesisPolymer chemistryOrganometallic CompoundsFerrous CompoundsAmino AcidsProtein secondary structurechemistry.chemical_classificationFluorenesValence (chemistry)Hydrogen bondSpectrum AnalysisDipeptidesAmino acidSolutionschemistryFerrocenePeptidomimeticsOxidation-ReductionDalton Transactions
researchProduct

Development of novel 1,4-benzodiazepine-based Michael acceptors as antitrypanosomal agents

2016

Novel 1,4-benzodiazepines, endowed with a Michael acceptor moiety, were designed taking advantage of a computational prediction of their pharmacokinetic parameters. Among all the synthesized derivatives, we identified a new lead compound (i.e., 4a), bearing a vinyl ketone warhead and endowed with a promising antitrypanosomal activity against Trypanosoma brucei brucei (IC50 = 5.29 µM), coupled with a lack of cytotoxicity towards mammalian cells (TC50>100 µM).

0301 basic medicineTrypanosomaKetonePeptidomimeticPeptidomimeticStereochemistryTrypanosoma brucei bruceiClinical BiochemistryPharmaceutical ScienceTrypanosoma brucei01 natural sciencesBiochemistryCell LineBenzodiazepinesMiceStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundparasitic diseasesDrug DiscoveryAnimalsStructure–activity relationshipMoietyCytotoxicityMolecular BiologyMicrowave irradiationchemistry.chemical_classificationDose-Response Relationship DrugMolecular Structurebiology010405 organic chemistryMacrophagesOrganic Chemistrybiology.organism_classificationMichael acceptors Microwave irradiation Peptidomimetics Pharmacokinetic parameters TrypanosomaTrypanocidal Agents0104 chemical sciencesPharmacokinetic parameter030104 developmental biologychemistryMichael reactionMolecular MedicineMichael acceptorLead compoundBioorganic & Medicinal Chemistry Letters
researchProduct

1,5-Disubstituted 1,2,3-Triazoles as Amide Bond Isosteres Yield Novel Tumor-Targeting Minigastrin Analogs.

2021

[Image: see text] 1,5-Disubstituted 1,2,3-triazoles (1,5-Tz) are considered bioisosteres of cis-amide bonds. However, their use for enhancing the pharmacological properties of peptides or proteins is not yet well established. Aiming to illustrate their utility, we chose the peptide conjugate [Nle(15)]MG11 (DOTA-dGlu-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH(2)) as a model compound since it is known that the cholecystokinin-2 receptor (CCK2R) is able to accommodate turn conformations. Analogs of [Nle(15)]MG11 incorporating 1,5-Tz in the backbone were synthesized and radiolabeled with lutetium-177, and their pharmacological properties (cell internalization, receptor binding affinity and specificity, pla…

Biodistribution3-TriazolesStereochemistryPeptidomimeticmedia_common.quotation_subject1201 natural sciencesBiochemistryTurn (biochemistry)Drug Discovery[CHIM]Chemical SciencesPeptide bondInternalizationReceptorCancermedia_commonTumor Targeting[CHIM.ORGA]Chemical Sciences/Organic chemistry010405 organic chemistryChemistry123-Triazoles; Peptidomimetics; Structure−activity relationships; Radiopharmaceuticals; Tumor targeting; CancerStructure-Activity RelationshipsOrganic ChemistryBiological activity0104 chemical sciences010404 medicinal & biomolecular chemistryYield (chemistry)PeptidomimeticsRadiopharmaceuticalsACS medicinal chemistry letters
researchProduct

Peptidomimetics – An infinite reservoir of metal binding motifs in metabolically stable and biologically active molecules

2020

The involvement of metal ions in interactions with therapeutic peptides is inevitable. They are one of the factors able to fine-tune the biological properties of antimicrobial peptides, a promising group of drugs with one large drawback - a problematic metabolic stability. Appropriately chosen, proteolytically stable peptidomimetics seem to be a reasonable solution of the problem, and the use of D-, β-, γ-amino acids, unnatural amino acids, azapeptides, peptoids, cyclopeptides and dehydropeptides is an infinite reservoir of metal binding motifs in metabolically stable, well-designed, biologically active molecules. Below, their specific structural features, metal-chelating abilities and anti…

PeptidomimeticMetal ions in aqueous solutionAntimicrobial peptidesMetal binding sites010402 general chemistryPeptides Cyclic01 natural sciencesBiochemistryInorganic ChemistryPeptoidsHumansMoleculeAmino AcidsChelating Agentschemistry.chemical_classificationBinding SitesBacteria010405 organic chemistryMetal bindingStereoisomerismBiological activityAntimicrobialCombinatorial chemistryAnti-Bacterial Agents0104 chemical sciencesAmino acidchemistryAntimicrobial peptidesPeptidomimeticsJournal of Inorganic Biochemistry
researchProduct

Amelioration of the abnormal phenotype of a new L1 syndrome mouse mutation with L1 mimetics

2021

L1 syndrome is a rare developmental disorder characterized by hydrocephalus of varying severity, intellectual deficits, spasticity of the legs, and adducted thumbs. Therapy is limited to symptomatic relief. Numerous gene mutations in the L1 cell adhesion molecule (L1CAM, hereafter abbreviated L1) were identified in L1 syndrome patients, and those affecting the extracellular domain of this transmembrane type 1 glycoprotein show the most severe phenotypes. Previously analyzed rodent models of the L1 syndrome focused on L1-deficient animals or mouse mutants with abrogated cell surface expression of L1, making it difficult to test L1 function-triggering mimetic compounds with potential therapeu…

Male0301 basic medicineToluidinesL1NeurogenesisCellNeural Cell Adhesion Molecule L1Gene mutationBiologyDuloxetine Hydrochloridemedicine.disease_causeBiochemistryCerebral VentriclesCorpus CallosumMice03 medical and health sciences0302 clinical medicineCerebellumIntellectual DisabilityGeneticsmedicineExtracellularAnimalsL1 syndromeMolecular BiologyCells CulturedNeuronsMutationSpastic Paraplegia HereditaryTrimebutineGenetic Diseases X-LinkedCell migrationSymptomatic reliefMice Inbred C57BLPhenotype030104 developmental biologymedicine.anatomical_structureMutationCancer researchPeptidomimeticsLocomotion030217 neurology & neurosurgeryBiotechnologyThe FASEB Journal
researchProduct

Synthesis and biological evaluation of novel peptidomimetics as rhodesain inhibitors

2016

Novel rhodesain inhibitors were developed by combining an enantiomerically pure 3-bromoisoxazoline warhead with a 1,4-benzodiazepine scaffold as specific recognition moiety. All compounds were proven to inhibit rhodesain with Ki values in the low-micromolar range. Their activity towards rhodesain was found to be coupled to an in vitro antitrypanosomal activity, with IC50 values ranging from the mid-micromolar to a low-micromolar value for the most active rhodesain inhibitor (R,S,S)-3. All compounds showed a good selectivity against the target enzyme since all of them were proven to be poor inhibitors of human cathepsin L. Novel rhodesain inhibitors were developed by combining an enantiomeri…

rhodesainPharmacologychemistry.chemical_classificationCathepsinPeptidomimetic010405 organic chemistryChemistryPeptidomimeticProton Magnetic Resonance SpectroscopyenPeptidomimetics; rhodesain; trypanosomaGeneral Medicine01 natural sciencesCombinatorial chemistryIn vitro0104 chemical sciencesCysteine Endopeptidases010404 medicinal & biomolecular chemistryEnzymeDrug DiscoveryIc50 valuesMoietyPeptidomimeticsCarbon-13 Magnetic Resonance SpectroscopytrypanosomaBiological evaluationJournal of Enzyme Inhibition and Medicinal Chemistry
researchProduct

Synthesis and biological evaluation of papain-family cathepsin L-like cysteine protease inhibitors containing a 1,4-benzodiazepine scaffold as antipr…

2014

Novel papain-family cathepsin L-like cysteine protease inhibitors endowed with antitrypanosomal and antimalarial activity were developed, through an optimization study of previously developed inhibitors. In the present work, we studied the structure-activity relationships of these derivatives, with the aim to develop new analogues with a simplified and more synthetically accessible structure and with improved antiparasitic activity. The structure of the model compounds was significantly simplified by modifying or even eliminating the side chain appended at the C3 atom of the benzodiazepine scaffold. In addition, a simple methylene spacer of appropriate length was inserted between the benzod…

Trypanosomamedicine.drug_classPeptidomimeticStereochemistryAntiparasiticCell SurvivalCathepsin LAntiprotozoal AgentsCysteine Proteinase InhibitorsBiochemistryCathepsin BCell LineCathepsin Lchemistry.chemical_compoundBenzodiazepinesMiceStructure-Activity RelationshipDrug DiscoverymedicineMoietyAnimalsGeneral Pharmacology Toxicology and PharmaceuticsPharmacologyCathepsinbiologyOrganic ChemistryCombinatorial chemistryCysteine proteasePapainantiprotozoal agents; inhibitors; Malaria; Peptidomimetics; structure-activity relationshipsCysteine EndopeptidaseschemistryAntiprotozoalbiology.proteinMolecular MedicineProtein BindingChemMedChem
researchProduct

Photoactivatable Adhesive Ligands for Light-Guided Neuronal Growth

2018

Neuro-regeneration after trauma requires growth and reconnection of neurons to reestablish information flow in particular directions across the damaged tissue. To support this process, biomaterials for nerve tissue regeneration need to provide spatial information to adhesion receptors on the cell membrane and to provide directionality to growing neurites. Here, photoactivatable adhesive peptides based on the CASIKVAVSADR laminin peptidomimetic are presented and applied to spatiotemporal control of neuronal growth to biomaterials in vitro. The introduction of a photoremovable group [6-nitroveratryl (NVOC), 3-(4,5-dimethoxy-2-nitrophenyl)butan-2-yl (DMNPB), or 2,2′-((3′-(1-hydroxypropan-2-yl)…

0301 basic medicineGUIDED AXON GROWTHNeuritePeptidomimeticNeurogenesisPeptideBiocompatible Materials02 engineering and technologyNEUROCHEMISTRYLigandsBiochemistryPHOTOTRIGGERED CELL ADHESIONCell membrane03 medical and health sciencesLamininmedicineCell AdhesionAnimalsAmino Acid SequenceCell adhesionMolecular BiologyCells Culturedchemistry.chemical_classificationNeuronsPhotolysisbiologyChemistryCELL ADHESIONOrganic ChemistryCiencias QuímicasAdhesion021001 nanoscience & nanotechnologyIn vitroLAMININ PEPTIDOMIMETICSMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureQuímica OrgánicaBiophysicsbiology.proteinMolecular MedicineLaminin0210 nano-technologyPeptidesCIENCIAS NATURALES Y EXACTAS
researchProduct

VCD studies on cyclic peptides assembled from L-α-amino acids and a trans-2-aminocyclopentane- or trans-2-aminocyclohexane carboxylic acid.

2010

The increasing interest in peptidomimetics of biological relevance prompted us to synthesize a series of cyclic peptides comprising trans-2-aminocyclohexane carboxylic acid (Achc) or trans-2-aminocyclopentane carboxylic acid (Acpc). NMR experiments in combination with MD calculations were performed to investigate the three-dimensional structure of the cyclic peptides. These data were compared to the conformational information obtained by electronic circular dichroism (ECD) and vibrational circular dichroism (VCD) spectroscopy. Experimental VCD spectra were compared to theoretical VCD spectra computed quantum chemically at B3LYP/6-31G(d) density functional theory (DFT) level. The good agreem…

Circular dichroismCyclohexanecarboxylic AcidsPeptidomimeticStereochemistryCarboxylic acidMolecular ConformationMolecular Dynamics SimulationBiochemistryelectronic circular dichroismPeptides CyclicMolecular dynamicsStructural BiologyDrug DiscoveryCycloleucineMolecular BiologyNuclear Magnetic Resonance BiomolecularPharmacologychemistry.chemical_classificationCyclohexylaminesCircular DichroismOrganic Chemistrycyclic peptidestrans-2-aminocyclopentaneGeneral Medicinevibrational circular dichroismCyclic peptideNMRAmino acidtrans-2-aminocyclohexane carboxylic acidchemistryVibrational circular dichroismMolecular MedicineDensity functional theorycarboxylic acidPeptidomimeticsJournal of peptide science : an official publication of the European Peptide Society
researchProduct

Toward engineering efficient peptidomimetics. Screening conformational landscape of two modified dehydroaminoacids

2013

Effective peptidomimetics should posses structural rigidity and appropriate interaction pattern leading to potential spatial and electronic matching to the target receptor site. Rational design of such small bioactive molecules could push chemical synthesis and molecular modeling toward faster progress in medicinal chemistry. Conformational properties of N-t-butoxycarbonyl-glycine-(E/Z)-dehydrophenylalanine N′,N′-dimethylamides (Boc-Gly-(E/Z)-ΔPhe-NMe2) in chloroform were studied by NMR and IR spectroscopy. The experimental findings were supported by extensive calculations at DFT(B3LYP, M06-2X) and MP2 levels of theory and the β-turn tendency for both isomers of the studied dipeptide were d…

Models MolecularspectroscopyMagnetic Resonance SpectroscopyMolecular modelProtein ConformationBiophysicsInfrared spectroscopydehydrophenylalanineBiochemistryBiomaterialschemistry.chemical_compoundComputational chemistryAmideStructural rigidityE isomersDipeptideOrganic Chemistryconformational analysisß-turn tendencyRational designGeneral MedicineCarbon-13 NMRSolutionschemistryDFT-GIAO calculationsIRProton NMRPeptidomimeticsPeptides13 C-NMRH-NMRZBiopolymers
researchProduct