Search results for "potentiaali"
showing 10 items of 35 documents
A new Cartan-type property and strict quasicoverings when p = 1 in metric spaces
2018
In a complete metric space that is equipped with a doubling measure and supports a Poincar\'e inequality, we prove a new Cartan-type property for the fine topology in the case $p=1$. Then we use this property to prove the existence of $1$-finely open \emph{strict subsets} and \emph{strict quasicoverings} of $1$-finely open sets. As an application, we study fine Newton-Sobolev spaces in the case $p=1$, that is, Newton-Sobolev spaces defined on $1$-finely open sets.
Curve packing and modulus estimates
2018
A family of planar curves is called a Moser family if it contains an isometric copy of every rectifiable curve in $\mathbb{R}^{2}$ of length one. The classical "worm problem" of L. Moser from 1966 asks for the least area covered by the curves in any Moser family. In 1979, J. M. Marstrand proved that the answer is not zero: the union of curves in a Moser family has always area at least $c$ for some small absolute constant $c > 0$. We strengthen Marstrand's result by showing that for $p > 3$, the $p$-modulus of a Moser family of curves is at least $c_{p} > 0$.
Scalable Constant pH Molecular Dynamics in GROMACS
2022
Molecular dynamics (MD) computer simulations are used routinely to compute atomistic trajectories of complex systems. Systems are simulated in various ensembles, depending on the experimental conditions one aims to mimic. While constant energy, temperature, volume, and pressure are rather straightforward to model, pH, which is an equally important parameter in experiments, is more difficult to account for in simulations. Although a constant pH algorithm based on the λ-dynamics approach by Brooks and co-workers [Kong, X.; Brooks III, C. L. J. Chem. Phys.1996, 105, 2414–2423] was implemented in a fork of the GROMACS molecular dynamics program, uptake has been rather limited, presumably due to…
Hilbert-Huang versus morlet wavelet transformation on mismatch negativity of children in uninterrupted sound paradigm
2009
Background. Compared to the waveform or spectrum analysis of event-related potentials (ERPs), time-frequency representation (TFR) has the advantage of revealing the ERPs time and frequency domain information simultaneously. As the human brain could be modeled as a complicated nonlinear system, it is interesting from the view of psychological knowledge to study the performance of the nonlinear and linear time-frequency representation methods for ERP research. In this study Hilbert-Huang transformation (HHT) and Morlet wavelet transformation (MWT) were performed on mismatch negativity (MMN) of children. Participants were 102 children aged 8–16 years. MMN was elicited in a passive oddbal…
Evaluation and extraction of mismatch negativity through exploiting temporal, spectral, time-frequency, and spatial features
2010
Hippocampal theta-band activity and trace eyeblink conditioning in rabbits.
2009
The authors examined the relationship between hippocampal theta activity and trace eyeblink conditioning. Hippocampal electrophysiological local field potentials were recorded before, during, and after conditioning or explicitly unpaired training sessions in adult male New Zealand White rabbits. As expected, a high relative power of theta activity (theta ratio) in the hippocampus predicted faster acquisition of the conditioned response during trace conditioning but, contrary to previous results obtained using the delay paradigm, only in the initial stage of learning. The presentation of the conditioned stimulus overall elicited an increase in the hippocampal theta ratio. The theta ratio dec…
Gradient estimates for heat kernels and harmonic functions
2020
Let $(X,d,\mu)$ be a doubling metric measure space endowed with a Dirichlet form $\E$ deriving from a "carr\'e du champ". Assume that $(X,d,\mu,\E)$ supports a scale-invariant $L^2$-Poincar\'e inequality. In this article, we study the following properties of harmonic functions, heat kernels and Riesz transforms for $p\in (2,\infty]$: (i) $(G_p)$: $L^p$-estimate for the gradient of the associated heat semigroup; (ii) $(RH_p)$: $L^p$-reverse H\"older inequality for the gradients of harmonic functions; (iii) $(R_p)$: $L^p$-boundedness of the Riesz transform ($p<\infty$); (iv) $(GBE)$: a generalised Bakry-\'Emery condition. We show that, for $p\in (2,\infty)$, (i), (ii) (iii) are equivalent, wh…
Tensorization of quasi-Hilbertian Sobolev spaces
2022
The tensorization problem for Sobolev spaces asks for a characterization of how the Sobolev space on a product metric measure space $X\times Y$ can be determined from its factors. We show that two natural descriptions of the Sobolev space from the literature coincide, $W^{1,2}(X\times Y)=J^{1,2}(X,Y)$, thus settling the tensorization problem for Sobolev spaces in the case $p=2$, when $X$ and $Y$ are infinitesimally quasi-Hilbertian, i.e. the Sobolev space $W^{1,2}$ admits an equivalent renorming by a Dirichlet form. This class includes in particular metric measure spaces $X,Y$ of finite Hausdorff dimension as well as infinitesimally Hilbertian spaces. More generally for $p\in (1,\infty)$ we…
Existence and almost uniqueness for p -harmonic Green functions on bounded domains in metric spaces
2020
We study ($p$-harmonic) singular functions, defined by means of upper gradients, in bounded domains in metric measure spaces. It is shown that singular functions exist if and only if the complement of the domain has positive capacity, and that they satisfy very precise capacitary identities for superlevel sets. Suitably normalized singular functions are called Green functions. Uniqueness of Green functions is largely an open problem beyond unweighted $\mathbf{R}^n$, but we show that all Green functions (in a given domain and with the same singularity) are comparable. As a consequence, for $p$-harmonic functions with a given pole we obtain a similar comparison result near the pole. Various c…
Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees
2019
In this paper, we study function spaces defined via dyadic energies on the boundaries of regular trees. We show that correct choices of dyadic energies result in Besov-type spaces that are trace spaces of (weighted) first order Sobolev spaces.