Search results for "printing"

showing 10 items of 532 documents

3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone.

2017

Abstract Here we describe the formulation of a morphogenetically active bio-ink consisting of amorphous microparticles (MP) prepared from Ca 2+ and the physiological inorganic polymer, polyphosphate (polyP). Those MP had been fortified by mixing with poly-e-caprolactone (PCL) to allow 3D-bioprinting. The resulting granular PCL/Ca-polyP-MP hybrid material, liquefied by short-time heating to 100 °C, was used for the 3D-printing of tissue-like scaffolds formed by strands with a thickness of 400 µm and a stacked architecture leaving ≈0.5 mm 2 -sized open holes enabling cell migration. The printed composite scaffold turned out to combine suitable biomechanical properties (Young’s modulus of 1.60…

0301 basic medicineScaffoldMaterials sciencePolyestersBiomedical EngineeringNanoparticle02 engineering and technologyBiochemistryBone and BonesBiomaterials03 medical and health scienceschemistry.chemical_compoundCell Line TumorHumansMolecular BiologySaos-2 cellsInorganic polymerTissue EngineeringTissue ScaffoldsRegeneration (biology)BiomaterialGeneral Medicine021001 nanoscience & nanotechnology030104 developmental biologyDurapatitechemistryPolycaprolactonePrinting Three-Dimensional0210 nano-technologyHybrid materialBiotechnologyBiomedical engineeringActa biomaterialia
researchProduct

TET3 prevents terminal differentiation of adult NSCs by a non-catalytic action at Snrpn.

2019

Ten-eleven-translocation (TET) proteins catalyze DNA hydroxylation, playing an important role in demethylation of DNA in mammals. Remarkably, although hydroxymethylation levels are high in the mouse brain, the potential role of TET proteins in adult neurogenesis is unknown. We show here that a non-catalytic action of TET3 is essentially required for the maintenance of the neural stem cell (NSC) pool in the adult subventricular zone (SVZ) niche by preventing premature differentiation of NSCs into non-neurogenic astrocytes. This occurs through direct binding of TET3 to the paternal transcribed allele of the imprinted gene Small nuclear ribonucleoprotein-associated polypeptide N (Snrpn), contr…

0301 basic medicineScienceCellular differentiationGeneral Physics and AstronomySubventricular zone02 engineering and technologyBiologyDNA-binding proteinArticleGeneral Biochemistry Genetics and Molecular BiologyCatalysissnRNP Core ProteinsDioxygenases03 medical and health sciencesMiceNeural Stem CellsLateral VentriclesProto-Oncogene ProteinsmedicineAnimalsRNA Small Interferinglcsh:SciencePsychological repressionreproductive and urinary physiologyMultidisciplinarySnRNP Core ProteinsQNeurogenesisBrainCell DifferentiationGeneral Chemistry021001 nanoscience & nanotechnologyNeural stem cellnervous system diseasesCell biologyDNA-Binding Proteins030104 developmental biologymedicine.anatomical_structurenervous systemAstrocyteslcsh:Qbiological phenomena cell phenomena and immunity0210 nano-technologyGenomic imprintingSignal Transduction
researchProduct

Monitoring few molecular binding events in scalable confined aqueous compartments by raster image correlation spectroscopy (CADRICS)

2016

The assembly of scalable liquid compartments for binding assays in array formats constitutes a topic of fundamental importance in life sciences. This challenge can be addressed by mimicking the structure of cellular compartments with biological native conditions. Here, inkjet printing is employed to develop up to hundreds of picoliter aqueous droplet arrays stabilized by oil-confinement with mild surfactants (Tween-20). The aqueous environments constitute specialized compartments in which biomolecules may exploit their function and a wide range of molecular interactions can be quantitatively investigated. Raster Image Correlation Spectroscopy (RICS) is employed to monitor in each compartmen…

0301 basic medicineStreptavidinBiomedical EngineeringMolecular bindingBiotinBioengineeringNanotechnology02 engineering and technologydroplets microarrays inkjet printing Raster Image Correlation Spectroscopy water-in-oil emulsion StreptvidinBiochemistry03 medical and health scienceschemistry.chemical_compoundCompartment (pharmacokinetics)Cellular compartmentchemistry.chemical_classificationAqueous solutionSpectrum AnalysisBiomoleculeWaterGeneral Chemistrycomputer.file_formatMicroarray Analysis021001 nanoscience & nanotechnology030104 developmental biologychemistryPrintingInkStreptavidinRaster graphics0210 nano-technologycomputerTwo-dimensional nuclear magnetic resonance spectroscopyLab on a Chip
researchProduct

A Weaning Reaction to Microbiota Is Required for Resistance to Immunopathologies in the Adult.

2019

International audience; Microbes colonize all body surfaces at birth and participate in the development of the immune system. In newborn mammals, the intestinal microbiota is first shaped by the dietary and immunological components of milk and then changes upon the introduction of solid food during weaning. Here, we explored the reactivity of the mouse intestinal immune system during the first weeks after birth and into adulthood. At weaning, the intestinal microbiota induced a vigorous immune response—a “weaning reaction”—that was programmed in time. Inhibition of the weaning reaction led to pathological imprinting and increased susceptibility to colitis, allergic inflammation, and cancer …

0301 basic medicinecolitis[SDV]Life Sciences [q-bio]short-chain fatty acidsImmunologyRetinoic acidTretinoinWeaningBiologyT-Lymphocytes Regulatoryregulatory T cellsAllergic inflammation03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineImmune systemRAR-related orphan receptor gammamicrobiotamedicineImmunology and AllergyWeaningAnimalsinflammatory pathologyColitisImprinting (psychology)Intestinal Mucosaneonatal periodNuclear Receptor Subfamily 1 Group F Member 3medicine.diseaseFatty Acids Volatile3. Good healthGastrointestinal Microbiome[SDV] Life Sciences [q-bio]Mice Inbred C57BL030104 developmental biologyInfectious DiseaseschemistryAnimals NewbornSolid food030220 oncology & carcinogenesisImmunologymucosal immunityImmunity
researchProduct

Dlk1 dosage regulates hippocampal neurogenesis and cognition

2021

Significance Generation of new neurons occurs normally in the adult brain in two locations: the subventricular zone (SVZ) in the walls of the lateral ventricles and the subgranular zone (SGZ) in the dentate gyrus (DG) of the hippocampus. Neurogenesis in the adult hippocampus has been implicated in cognitive functions such as learning, memory, and recovery of stress response. Imprinted genes are highly prevalent in the brain and have adult and developmental important functions. Genetic deletion of the imprinted gene Dlk1 from either parental allele shows that DLK1 is a key mediator of quiescence in adult hippocampal NSCs. Additionally, Dlk1 is exquisitely dosage sensitive in the brain with p…

0301 basic medicinehippocampusHippocampusgene dosageBiologySubgranular zone03 medical and health sciencesMice0302 clinical medicineCognitionNeuroplasticitymedicineAnimalsEpigeneticsImprinting (psychology)AllelesMultidisciplinarybehaviorDentate gyrusNeurogenesisCalcium-Binding Proteinsneurogenesis genomic imprinting behavior gene dosage hippocampus424Biological Sciencesgenomic imprintingneurogenesis030104 developmental biologymedicine.anatomical_structurenervous systemGenomic imprintingNeuroscience030217 neurology & neurosurgeryNeuroscience
researchProduct

The Importance of Developing Electrochemical Sensors Based on Molecularly Imprinted Polymers for a Rapid Detection of Antioxidants

2021

International audience; This review aims to pin out the importance of developing a technique for rapid detection of antioxidants, based on molecular imprinting techniques. It covers three major areas that have made great progress over the years in the field of research, namely: antioxidants characterization, molecular imprinting and electrochemistry, alone or combined. It also reveals the importance of bringing these three areas together for a good evaluation of antioxidants in a simple or complex medium, based on selectivity and specificity. Although numerous studies have associated antioxidants with molecular imprinting, or antioxidants with electrochemistry, but even electrochemistry wit…

0301 basic medicinesol-gel techniquePhysiologyClinical Biochemistryelectrochemical sensorNanotechnologyReviewBiochemistryRapid detection03 medical and health sciences0302 clinical medicine[SDV.IDA]Life Sciences [q-bio]/Food engineering[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMolecular Biologyscreen printed electrodesChemistrylcsh:RM1-950Molecularly imprinted polymerCell Biologyradical polymerizationcyclic voltammetrylcsh:Therapeutics. Pharmacologyantioxidants030104 developmental biologyindustrial applicationsmolecular imprintingMolecular imprinting030217 neurology & neurosurgerydifferential pulse voltammetryAntioxidants
researchProduct

Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today.

2020

The field of tissue engineering has numerous potential for modified therapeutic results and has been inspired by enhancements in bioengineering at the recent decades. The techniques of regenerating tissues and assembling functional paradigms that are responsible for repairing, maintaining, and revitalizing lost organs and tissues have affected the entire spectrum of health care studies. Strategies to combine bioactive molecules, biocompatible materials and cells are important for progressing the renewal of damaged tissues. Hydrogels have been utilized as one of the most popular cell substrate/carrier in tissue engineering since previous decades, respect to their potential to retain a 3D str…

0303 health sciences3D bioprintingStimuli responsiveTissue EngineeringTissue ScaffoldsChemistryCell substrateBioprintingPharmaceutical ScienceNanotechnologyBiocompatible MaterialsHydrogels02 engineering and technologyMatrix (biology)021001 nanoscience & nanotechnologyBiocompatible materiallaw.invention03 medical and health sciencesTissue engineeringlawSelf-healing hydrogelsRegenerationViability assay0210 nano-technology030304 developmental biologyJournal of controlled release : official journal of the Controlled Release Society
researchProduct

2019

Structural DNA nanotechnology provides a viable route for building from the bottom-up using DNA as construction material. The most common DNA nanofabrication technique is called DNA origami, and it allows high-throughput synthesis of accurate and highly versatile structures with nanometer-level precision. Here, it is shown how the spatial information of DNA origami can be transferred to metallic nanostructures by combining the bottom-up DNA origami with the conventionally used top-down lithography approaches. This allows fabrication of billions of tiny nanostructures in one step onto selected substrates. The method is demonstrated using bowtie DNA origami to create metallic bowtie-shaped an…

0303 health sciencesNanostructureGeneral Immunology and MicrobiologyGeneral Chemical EngineeringGeneral NeuroscienceNanotechnology02 engineering and technologySubstrate (printing)021001 nanoscience & nanotechnologyGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesNanolithographyDNA nanotechnologyDNA origami0210 nano-technologyLayer (electronics)LithographyPlasmon030304 developmental biologyJournal of Visualized Experiments
researchProduct

Multifunctional Bioinstructive 3D Architectures to Modulate Cellular Behavior

2019

Biological structures control cell behavior via physical, chemical, electrical, and mechanical cues. Approaches that allow us to build devices that mimic these cues in a combinatorial way are lacking due to there being no suitable instructive materials and limited manufacturing procedures. This challenge is addressed by developing a new conductive composite material, allowing for the fabrication of 3D biomimetic structures in a single manufacturing method based on two?photon polymerization. The approach induces a combinatorial biostimulative input that can be tailored to a specific application. Development of the 3D architecture is performed with a chemically actuating photocurable acrylate…

0303 health sciencesbiomimetic 3D architecturesMaterials scienceregenerative medicineNanotechnology02 engineering and technology3D printing021001 nanoscience & nanotechnologyCondensed Matter PhysicsRegenerative medicineElectronic Optical and Magnetic Materialscardiomyocyte maturationBiomaterials03 medical and health sciencesGeneral chemical engineeringElectrochemistry0210 nano-technology030304 developmental biologyAdvanced Functional Materials
researchProduct

Mechanical Plantar Foot Stimulation in Parkinson′s Disease: A Scoping Review

2020

Background: Parkinson′s disease (PD) is the second most prevalent neurodegenerative disease in older individuals. Neurorehabilitation-based interventions such as those improving gait are crucial for a holistic approach and to limit falls. Several studies have recently shown that mechanical plantar foot stimulation is a beneficial intervention for improving gait impairment in PD patients. The objective of this scoping review is to evaluate the beneficial effects of this stimulation on gait parameters, and to analyse protocols of foot stimulation and other effects in non-motor symptoms. Relevant articles were searched in the Medline database using Pubmed and Scopus, using the primary search t…

030506 rehabilitationmedicine.medical_specialtyParkinson's diseasemedicine.medical_treatmentlcsh:MedicineStimulationReviewDiseasegaitrehabilitation03 medical and health sciences0302 clinical medicinePhysical medicine and rehabilitationmedicinestride lengthNeurorehabilitationRehabilitationmedical devicebusiness.industrylcsh:R3D printingmedicine.diseaseGaitClinical trialPreferred walking speedfoot0305 other medical sciencebusinesshuman activitiesasymmetry030217 neurology & neurosurgeryDiseases
researchProduct