Search results for "processing."
showing 10 items of 8323 documents
Engineering insights from an anthropocentric cyber-physical system: A case study for an assembly station
2016
Abstract To effectively cope with the complexity of manufacturing control problems the cyber-physical systems are engineered to work in the social space. Therefore the research in the field of cyber-physical systems needs to address social aspects when this concept is adopted in factory automation. The paper argues for an anthropocentric cyber-physical reference model as the basic decomposition unit for the design of distributed manufacturing control systems. The model assimilates all the required components (i.e. physical, computational and human) of a synthetic hybrid system in an integrated way. This is due to the real need to design cyber-physical production systems where the technologi…
3D Point Cloud Descriptor for Posture Recognition
2018
International audience
Quality Assessment of Reconstruction and Relighting from RTI Images: Application to Manufactured Surfaces
2019
In this paper, we propose to evaluate the quality of the reconstruction and relighting from images acquired by a Reflectance Transformation Imaging (RTI) device. Three relighting models, namely the PTM, HSH and DMD, are evaluated using PSNR and SSIM. A visual assessment of how the reconstructed surfaces are perceived is also carried out through a sensory experiment. This study allows to estimate the relevance of these models to reproduce the appearance of the manufactured surfaces. It also shows that DMD reproduces the most accurate reconstruction/relighting to an acquired measurement and that a higher sampling density don't mean necessarily a higher perceptual quality.
Automatic mass spectra recognition for Ultra High Vacuum systems using multilabel classification
2021
Abstract In Ultra High-Vacuum (UHV) systems it is common to find a mixture of many gases originating from surface outgassing, leaks and permeation that contaminate vacuum chambers and cause issues to reach ultimate pressures. The identification of these contaminants is, in general, done manually by trained technicians from the analysis of mass spectra. This task is time consuming and can lead to misinterpretation or partial understanding of issues. The challenge resides in the rapid identification of these contaminants by using some automatic gas identification technique. This paper explores the automatic and simultaneous identification of 80 molecules, including some of the most commonly p…
Static and Dynamic Objects Analysis as a 3D Vector Field
2017
International audience; In the context of scene modelling, understanding, and landmark-based robot navigation, the knowledge of static scene parts and moving objects with their motion behaviours plays a vital role. We present a complete framework to detect and extract the moving objects to reconstruct a high quality static map. For a moving 3D camera setup, we propose a novel 3D Flow Field Analysis approach which accurately detects the moving objects using only 3D point cloud information. Further, we introduce a Sparse Flow Clustering approach to effectively and robustly group the motion flow vectors. Experiments show that the proposed Flow Field Analysis algorithm and Sparse Flow Clusterin…
Homography based egomotion estimation with a common direction
2017
International audience; In this paper, we explore the different minimal solutions for egomotion estimation of a camera based on homography knowing the gravity vector between calibrated images. These solutions depend on the prior knowledge about the reference plane used by the homography. We then demonstrate that the number of matched points can vary from two to three and that a direct closed-form solution or a Gröbner basis based solution can be derived according to this plane. Many experimental results on synthetic and real sequences in indoor and outdoor environments show the efficiency and the robustness of our approach compared to standard methods.
Robust adaptive tracking control of uncertain systems with time-varying input delays
2017
ABSTRACTIn this paper, the problem of robust adaptive tracking control of uncertain systems with time-varying input delays is studied. Under some mild assumptions, a robust adaptive controller is designed by using adaptive backstepping technique such that the system is globally stable and the system output can track a given reference signal. At the same time, a root mean square type of bound is obtained for the tracking error as a function of design parameters and thus can be adjusted. Finally, one numerical example is given to show the effectiveness of the proposed scheme.
Adaptive Control of Soft Robots Based on an Enhanced 3D Augmented Rigid Robot Matching
2021
Despite having proven successful in generating precise motions under dynamic conditions in highly deformable soft-bodied robots, model based techniques are also prone to robustness issues connected to the intrinsic uncertain nature of the dynamics of these systems. This letter aims at tackling this challenge, by extending the augmented rigid robot formulation to a stable representation of three dimensional motions of soft robots, under Piecewise Constant Curvature hypothesis. In turn, the equivalence between soft-bodied and rigid robots permits to derive effective adaptive controllers for soft-bodied robots, achieving perfect posture regulation under considerable errors in the knowledge of …
A Self-Contained Electro-Hydraulic Cylinder with Passive Load-Holding Capability
2019
Self-contained electro-hydraulic cylinders have the potential to replace both conventional hydraulic systems and the electro-mechanical counterparts enhancing energy efficiency, plug-and-play installation, and reduced maintenance. Current commercial solutions of this technology are limited and typically tailor-made, whereas the research emphasis is primarily on cost efficiency and power applications below five [kW]. Therefore, there is the need of developing more flexible systems adaptable to multiple applications. This research paper offers a contribution in this regard. It presents an electro-hydraulic self-contained single-rod cylinder with passive load-holding capability, sealed tank, c…
Energy-based fluid–structure model of the vocal folds
2020
AbstractLumped elements models of vocal folds are relevant research tools that can enhance the understanding of the pathophysiology of many voice disorders. In this paper, we use the port-Hamiltonian framework to obtain an energy-based model for the fluid–structure interactions between the vocal folds and the airflow in the glottis. The vocal fold behavior is represented by a three-mass model and the airflow is described as a fluid with irrotational flow. The proposed approach allows to go beyond the usual quasi-steady one-dimensional flow assumption in lumped mass models. The simulation results show that the proposed energy-based model successfully reproduces the oscillations of the vocal …