Search results for "rent"
showing 10 items of 14059 documents
Operating a cesium sputter source in a pulsed mode
2020
A scheme is presented for pulsing of a cesium sputter negative ion source by periodically switching on and off the high voltage driving the sputtering process. We demonstrate how the pulsed ion beam can be used in combination with a pulsed laser (6 ns pulse length) that has a 10 Hz repetition rate to study the photodetachment process, where a negative ion is neutralized due to the absorption of a photon. In such experiments, where the ion beam is used only for a small fraction of the time, we show that the pulsed mode operation can increase the lifetime of a cathode by two orders of magnitude as compared with DC operation. We also investigate how the peak ion current compares with the ion c…
Performance evaluation and stability of silicide-based thermoelectric modules
2020
Abstract Long-term studies on thermoelectric generators based on N-type magnesium silicide (Mg2.01Si0.49Sn0.5Sb0.01) and P-type higher manganese silicide (Mn0.98Mo0.02Si1.73Ge0.02) materials are presented, in the operating temperature range of 200 °C–400 °C. Emphasis is put on the performance and reliability of the current collector configuration, especially on the hot side of the module, and on the thermomechanical stresses that are created during operation and lifetime testing as a result of large temperature gradients experienced across the thermoelectric legs. With silver (Ag) paste as contact material, the long term-stability of the uni-couples was carried out on non-metalized legs and…
Rock-salt CdZnO as a transparent conductive oxide
2018
Transparent conducting oxides (TCOs) are widely used in applications from solar cells to light emitting diodes. Here, we show that the metal organic chemical vapor deposition (MOCVD)-grown, rock-salt CdZnO ternary, has excellent potential as a TCO. To assess this compound, we use a combination of infrared reflectance and ultraviolet-visible absorption spectroscopies, together with Hall effect, to determine its optical and electrical transport characteristics. It is found that the incorporation of Zn produces an increment of the electron concentration and mobility, yielding lower resistivities than those of CdO, with a minimum of 1.96 × 10 − 4 Ω · cm for a Zn content of 10%. Moreover, due to…
Spin–orbit torque driven multi-level switching in He + irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy
2020
We have investigated the spin–orbit torque-driven magnetization switching in W/CoFeB/MgO Hall bars with perpendicular magnetic anisotropy. He+ ion irradiation through a mask has been used to reduce locally the effective perpendicular anisotropy at a Hall cross. Anomalous Hall effect measurements combined with Kerr microscopy indicate that the switching process is dominated by domain wall (DW) nucleation in the irradiated region followed by rapid domain propagation at a current density as low as 0.8 MA/cm2 with an assisting in-plane magnetic field. Thanks to the implemented strong pinning of the DW at the transition between the irradiated and the non-irradiated region, an intermediate Hall r…
3D modeling of growth ridge and edge facet formation in 〈100〉 floating zone silicon crystal growth process
2019
Abstract A 3D quasi-stationary model for crystal ridge formation in FZ crystal growth systems for silicon is presented. Heat transfer equations for the melt and crystal are solved, and an anisotropic crystal growth model together with a free surface shape solver is used to model the facet growth and ridge formation. The simulation results for 4″ and 5″ crystals are presented and compared to experimental ridge shape data.
Effect of process parameters and crystal orientation on 3D anisotropic stress during CZ and FZ growth of silicon
2017
Abstract Simulations of 3D anisotropic stress are carried out in and oriented Si crystals grown by FZ and CZ processes for different diameters, growth rates and process stages. Temperature dependent elastic constants and thermal expansion coefficients are used in the FE simulations. The von Mises stress at the triple point line is ~5–11% higher in crystals compared to crystals. The process parameters have a larger effect on the von Mises stress than the crystal orientation. Generally, the crystal has a higher azimuthal variation of stress along the triple point line (~8%) than the crystal (~2%). The presence of a crystal ridge increases the stress beside the ridge and decreases it on the ri…
Gel combustion synthesis and magnetic properties of CoFe2O4, ZnFe2O4, and MgFe2O4 using 6-aminohexanoic acid as a new fuel
2020
Abstract For the first time, 6-aminohexanoic acid is used as an alternative fuel in the synthesis of the spinel ferrites with compositions CoFe2O4, ZnFe2O4 and MgFe2O4 using gel combustion synthesis with different oxidizer-to-fuel (O/F) ratios. The gel precursors were studied by differential thermal analysis and thermogravimetry (DTA/TG), which showed that the ignition temperature depends on the gel precursor, being around 230 °C, 130 °C and 275 °C for CoFe2O4, ZnFe2O4, and MgFe2O4, respectively. These results showed than the 6-aminohexanoic acid has an ignition temperature lower than the urea and the citric acid when were used in the synthesis of the spinel ferrites by gel combustion. More…
3D magnetic and thermal fields for in the transformer with homogenised amorphous C-core under high frequency
2017
2018
Damping distances of surface plasmon polariton modes sustained by different thin titanium nitride (TiN) films are measured at the telecom wavelength of 1.55 μm. The damping distances are correlated to the electrical direct current resistivity of the films sustaining the surface plasmon modes. It is found that TiN/Air surface plasmon mode damping distances drop non-linearly from 40 to 16μm as the resistivity of the layers increases from 28 to 130μΩ.cm, respectively. The relevance of the direct current (dc) electrical resistivity for the characterization of TiN plasmonic properties is investigated in the framework of the Drude model, on the basis of parameters extracted from spectroscopic ell…
Current Spreading Length and Injection Efficiency in ZnO/GaN-Based Light-Emitting Diodes
2019
We report on carrier injection features in light-emitting diodes (LEDs) based on nonintentionally doped-ZnO/p-GaN heterostructures. These LEDs consist of a ZnO layer grown by chemical-bath deposition (CBD) onto a p-GaN template without using any seed layer. The ZnO layer (~1- $\mu \text{m}$ thickness) consists of a dense collection of partially coalesced ZnO nanorods, organized in wurtzite phase with marked vertical orientation, whose density depends on the concentration of the solution during the CBD process. Due to the limited conductivity of the p-GaN layer, the recombination in the n-region is strongly dependent on the spreading length of the holes, ${L}_{h}$ , coming from the p-contact…