Search results for "ribosomes"
showing 10 items of 63 documents
The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation
2017
Ribosome assembly requires the concerted expression of hundreds of genes, which are transcribed by all three nuclear RNA polymerases. Transcription elongation involves dynamic interactions between RNA polymerases and chromatin. We performed a synthetic lethal screening in Saccharomyces cerevisiae with a conditional allele of SPT6, which encodes one of the factors that facilitates this process. Some of these synthetic mutants corresponded to factors that facilitate pre-rRNA processing and ribosome biogenesis. We found that the in vivo depletion of one of these factors, Arb1, activated transcription elongation in the set of genes involved directly in ribosome assembly. Under these depletion c…
The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons
2015
We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within th…
Modulation of protein synthesis and degradation maintains proteostasis during yeast growth at different temperatures
2016
To understand how cells regulate each step in the flow of gene expression is one of the most fundamental goals in molecular biology. In this work, we have investigated several protein turnover-related steps in the context of gene expression regulation in response to changes in external temperature in model yeast Saccharomyces cerevisiae. We have found that the regulation of protein homeostasis is stricter than mRNA homeostasis. Although global translation and protein degradation rates are found to increase with temperature, the increase of the catalytic activity of ribosomes is higher than the global translation rate suggesting that yeast cells adapt the amount of translational machinery to…
Acute depletion of telomerase components DKC1 and NOP10 induces oxidative stress and disrupts ribosomal biogenesis via NPM1 and activation of the P53…
2020
Mutations in DKC1, NOP10, and TINF2 genes, coding for proteins in telomerase and shelterin complexes, are responsible for diverse diseases known as telomeropathies and ribosomopathies, including dyskeratosis congenita (DC, ORPHA 1775). These genes contribute to the DC phenotype through mechanisms that are not completely understood. We previously demonstrated in models of DC that oxidative stress is an early and independent event that occurs prior to telomere shortening. To clarify the mechanisms that induce oxidative stress, we silenced genes DKC1, NOP10, and TINF2 with siRNA technology. With RNA array hybridisation, we found several altered pathways for each siRNA model. Afterwards, we ide…
Dom34 Links Translation to Protein O-mannosylation.
2016
In eukaryotes, Dom34 upregulates translation by securing levels of activatable ribosomal subunits. We found that in the yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans, Dom34 interacts genetically with Pmt1, a major isoform of protein O-mannosyltransferase. In C. albicans, lack of Dom34 exacerbated defective phenotypes of pmt1 mutants, while they were ameliorated by Dom34 overproduction that enhanced Pmt1 protein but not PMT1 transcript levels. Translational effects of Dom34 required the 5′-UTR of the PMT1 transcript, which bound recombinant Dom34 directly at a CA/AC-rich sequence and regulated in vitro translation. Polysomal profiling revealed that Dom34 stimu…
Molecular characterization of Treponema pallidum subsp. pallidum in Switzerland and France with a new multilocus sequence typing scheme
2018
Syphilis is an important public health problem and an increasing incidence has been noted in recent years. Characterization of strain diversity through molecular data plays a critical role in the epidemiological understanding of this re-emergence. We here propose a new high-resolution multilocus sequence typing (MLST) scheme for Treponema pallidum subsp. pallidum (TPA). We analyzed 30 complete and draft TPA genomes obtained directly from clinical samples or from rabbit propagated strains to identify suitable typing loci and tested the new scheme on 120 clinical samples collected in Switzerland and France. Our analyses yielded three loci with high discriminatory power: TP0136, TP0548, and TP…
Protein kinase activities associated with ribosomes of developing rat brain. Identification of eukaryotic initiation factor 2 kinases.
1986
Protein kinases associated with ribosomes in the brains of suckling (4-10 days) and adult (2 months) rats were extracted from ribosomal fraction with 0.5 M KCl. The different protein kinase activities were characterized by their ability to phosphorylate three exogenous substrates: casein, histone IIs and histone IIIs in the presence of different modulators. Ribosomal salt wash fractions contain a high casein kinase activity which was partially inhibited by heparin and stimulated by calmodulin in the presence of Ca2+, indicating the presence of casein kinase I and II and calcium/calmodulin-dependent kinases. Cyclic AMP and cyclic GMP-dependent kinases and protein kinase C (calcium/phospholip…
Regulatory factor for the transcription of the ribosomal genes in amphibian oocytes.
1970
AMPHIBIAN oocytes provide very convenient material for the study of the mechanisms that control ribosomal RNA synthesis because their pattern of ribosomal RNA synthesis does not change greatly during oogenesis. During the lampbrush stage of oogenesis (stage 4) more than 97 per cent of the RNA synthesized per unit time in the oocytes is ribosomal. This happens because the genes for ribosomal RNA are specifically amplified3–5 to such an extent that the oocyte nucleus (germinal vesicle) has an rDNA content approximately 1,500 times more than the haploid amount4. On the other hand, in mature oocytes (stage 6) no ribosomal RNA is synthesized1,2, although the extra copies of the ribosomal cistron…
Change in Protein Phenotype without a Nucleus: Translational Control in Platelets
2004
For most cells the nucleus takes center stage. Not only is it the largest organelle in eukaryotic cells, it carries most of the genome and transcription of DNA to RNA largely takes place in the nucleus. Because transcription is a major step in gene regulation, the absence of a nucleus is limiting from a biosynthetic standpoint. Consequently, the anucleate status of platelets has stereotyped it as a cell without synthetic potential. It is now clear, however, that this viewpoint is far too simplistic. In response to physiologic stimuli, platelets synthesize biologically relevant proteins that are regulated via gene expression programs at the translational level. This process does not require …
Cell volume homeostatically controls the rDNA repeat copy number and rRNA synthesis rate in yeast
2021
[Abstract] The adjustment of transcription and translation rates to the changing needs of cells is of utmost importance for their fitness and survival. We have previously shown that the global transcription rate for RNA polymerase II in budding yeast Saccharomyces cerevisiae is regulated in relation to cell volume. Total mRNA concentration is constant with cell volume since global RNApol II-dependent nascent transcription rate (nTR) also keeps constant but mRNA stability increases with cell size. In this paper, we focus on the case of rRNA and RNA polymerase I. Contrarily to that found for RNA pol II, we detected that RNA polymerase I nTR increases proportionally to genome copies and cell s…