Search results for "rotu"

showing 10 items of 642 documents

Microenvironments to study migration and somal translocation in cortical neurons

2018

Migrating post-mitotic neurons of the developing cerebral cortex undergo terminal somal translocation (ST) when they reach their final destination in the cortical plate. This process is crucial for proper cortical layering and its perturbation can lead to brain dysfunction. Here we present a reductionist biomaterials platform that faithfully supports and controls the distinct phases of terminal ST in vitro. We developed microenvironments with different adhesive molecules to support neuronal attachment, neurite extension, and migration in distinct manners. Efficient ST occurred when the leading process of migratory neurons crossed from low-to high-adhesive areas on a substrate, promoting spr…

0301 basic medicineCORTICAL NEURONSGrowth ConesBiophysicsCEREBRAL CORTEXBioengineeringINGENIERÍAS Y TECNOLOGÍASBiologySOMAL TRANSLOCATIONMicrotubulesBiotecnología IndustrialBiomaterials03 medical and health sciences0302 clinical medicineMicrotubuleCell MovementmedicineSomal translocationCell AdhesionAnimalsCell adhesionGrowth coneCerebral CortexNeuronsBioproductos Biomateriales Bioplásticos Biocombustibles Bioderivados etc.Cortical neuronsActin cytoskeletonMice Inbred C57BLCORTICOGENESISCorticogenesisActin Cytoskeleton030104 developmental biologymedicine.anatomical_structureCellular MicroenvironmentNEURONAL MIGRATIONMechanics of MaterialsCerebral cortexCeramics and CompositesNeuroscience030217 neurology & neurosurgery
researchProduct

Molecular, Biological and Structural Features of VL CDR-1 Rb44 Peptide, Which Targets the Microtubule Network in Melanoma Cells

2019

Microtubules are important drug targets in tumor cells, owing to their role in supporting and determining the cell shape, organelle movement and cell division. The complementarity-determining regions (CDRs) of immunoglobulins have been reported to be a source of anti-tumor peptide sequences, independently of the original antibody specificity for a given antigen. We found that, the anti-Lewis B mAb light-chain CDR1 synthetic peptide Rb44, interacted with microtubules and induced depolymerization, with subsequent degradation of actin filaments, leading to depolarization of mitochondrial membrane-potential, increase of ROS, cell cycle arrest at G2/M, cleavage of caspase-9, caspase-3 and PARP, …

0301 basic medicineCancer ResearchCell divisionComplementarity determining regionCleavage (embryo)lcsh:RC254-28203 medical and health sciences0302 clinical medicineDownregulation and upregulationMicrotubulecomplementarity-determining regionActinbiologyChemistryIntrinsic apoptosisapoptosislcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogenspeptideCell biology030104 developmental biologyTubulintubulinOncology030220 oncology & carcinogenesisbiology.proteinmetastatic melanomamicrotubuleFrontiers in Oncology
researchProduct

Microtubule disruption changes endothelial cell mechanics and adhesion

2019

AbstractThe interest in studying the mechanical and adhesive properties of cells has increased in recent years. The cytoskeleton is known to play a key role in cell mechanics. However, the role of the microtubules in shaping cell mechanics is not yet well understood. We have employed Atomic Force Microscopy (AFM) together with confocal fluorescence microscopy to determine the role of microtubules in cytomechanics of Human Umbilical Vein Endothelial Cells (HUVECs). Additionally, the time variation of the adhesion between tip and cell surface was studied. The disruption of microtubules by exposing the cells to two colchicine concentrations was monitored as a function of time. Already, after 3…

0301 basic medicineCell biologyIntravital MicroscopyScienceConfocalCellBiophysicsCell Culture Techniques02 engineering and technologyMicroscopy Atomic ForceMechanotransduction CellularMicrotubulesArticleUmbilical veinCell Line03 medical and health sciencesMicrotubuleCell AdhesionHuman Umbilical Vein Endothelial CellsFluorescence microscopemedicineHumansCytoskeletonCytoskeletonMicroscopy ConfocalMultidisciplinaryDose-Response Relationship DrugChemistryPhysicsQRMechanicsAdhesion021001 nanoscience & nanotechnologyMaterials scienceApplied physicsEndothelial stem cell030104 developmental biologymedicine.anatomical_structureMicroscopy FluorescenceMedicineBiomaterials - cellsColchicine0210 nano-technologyBiological physicsScientific Reports
researchProduct

OFIP/KIAA0753 forms a complex with OFD1 and FOR20 at pericentriolar satellites and centrosomes and is mutated in one individual with oral-facial-digi…

2016

Item does not contain fulltext Oral-facial-digital (OFD) syndromes are rare heterogeneous disorders characterized by the association of abnormalities of the face, the oral cavity and the extremities, some due to mutations in proteins of the transition zone of the primary cilia or the closely associated distal end of centrioles. These two structures are essential for the formation of functional cilia, and for signaling events during development. We report here causal compound heterozygous mutations of KIAA0753/OFIP in a patient with an OFD VI syndrome. We show that the KIAA0753/OFIP protein, whose sequence is conserved in ciliated species, associates with centrosome/centriole and pericentrio…

0301 basic medicineCentriolecell-cycle progressionGene Expressionmedicine.disease_causeCiliopathieshuman-disease genemolecular characterizationbbs proteinsGenetics (clinical)Conserved SequenceCentriolesGeneticsMutationCiliumCiliary transition zoneMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]General MedicineOrofaciodigital Syndromes3. Good healthcentriolar satellitesmultiple sequence alignmentbasal body dockingFemaleMicrotubule-Associated ProteinsProtein BindingHeterozygoteMolecular Sequence DataBiology03 medical and health sciencesIntraflagellar transportCiliogenesis[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyGeneticsmedicineHumansAmino Acid SequenceCiliaMolecular BiologyCentrosomeintraflagellar transportBase SequenceInfant NewbornProteins030104 developmental biologyCentrosomeMutationciliary transition zoneSequence Alignment[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyciliogenesis
researchProduct

Composition and geographic variation of the bacterial microbiota associated with the coelomic fluid of the sea urchin Paracentrotus lividus

2020

AbstractIn the present work, culture-based and culture-independent investigations were performed to determine the microbiota structure of the coelomic fluid of Mediterranean sea urchin Paracentrotus lividus individuals collected from two distinct geographical sites neighboring a high-density population bay and a nature reserve, respectively. Next Generation Sequencing analysis of 16S rRNA gene (rDNA) showed that members of the Proteobacteria, Bacteroidetes and Fusobacteria phyla, which have been previously reported to be commonly retrieved from marine invertebrates, dominate the overall population of microorganisms colonizing this liquid tissue, with minority bacterial genera exhibiting rem…

0301 basic medicineDNA BacterialScience030106 microbiologyPopulationZoologySettore BIO/11 - Biologia MolecolareMicrobial communitiesSettore BIO/19 - Microbiologia GeneraleDNA RibosomalMicrobiologyParacentrotus lividusArticlemicrobiota sea urchin coelomic fluidsea urchin03 medical and health sciencesbiology.animalRNA Ribosomal 16SmicrobiotaAnimalseducationSea urchinPhylogenyeducation.field_of_studyBacteriological TechniquesMultidisciplinarybiologyBacteriaQRBacteroidetesHigh-Throughput Nucleotide SequencingFusobacteriaMarine invertebratesSequence Analysis DNAbiology.organism_classificationcoelomic fuid030104 developmental biologyEchinodermParacentrotus lividusParacentrotusMedicineProteobacteria
researchProduct

Cofilin and Neurodegeneration: New Functions for an Old but Gold Protein

2021

Cofilin is an actin-binding protein that plays a major role in the regulation of actin dynamics, an essential cellular process. This protein has emerged as a crucial molecule for functions of the nervous system including motility and guidance of the neuronal growth cone, dendritic spine organization, axonal branching, and synaptic signalling. Recently, other important functions in cell biology such as apoptosis or the control of mitochondrial function have been attributed to cofilin. Moreover, novel mechanisms of cofilin function regulation have also been described. The activity of cofilin is controlled by complex regulatory mechanisms, with phosphorylation being the most important, since t…

0301 basic medicineDendritic spine organizationCellMotilityNeurosciences. Biological psychiatry. NeuropsychiatryReviewmacromolecular substancescofilinBiologyenvironment and public health03 medical and health sciences0302 clinical medicinemedicineneurodegenerative diseasescofilin–actin rodsGeneral Neurosciencemitochondrial fissionNeurodegenerationapoptosisCofilinmedicine.diseaseCell biologymicrotubule instability030104 developmental biologymedicine.anatomical_structurePhosphorylationMitochondrial fission030217 neurology & neurosurgeryFunction (biology)RC321-571Brain Sciences
researchProduct

Regulation of Dendritic Spine Morphology in Hippocampal Neurons by Copine-6.

2015

Dendritic spines compartmentalize information in the brain, and their morphological characteristics are thought to underly synaptic plasticity. Here we identify copine-6 as a novel modulator of dendritic spine morphology. We found that brain-derived neurotrophic factor (BDNF) - a molecule essential for long-term potentiation of synaptic strength - upregulated and recruited copine-6 to dendritic spines in hippocampal neurons. Overexpression of copine-6 increased mushroom spine number and decreased filopodia number, while copine-6 knockdown had the opposite effect and dramatically increased the number of filopodia, which lacked PSD95. Functionally, manipulation of post-synaptic copine-6 level…

0301 basic medicineDendritic spineVesicular Inhibitory Amino Acid Transport Proteinsdrug effects [Synapses]Tropomyosin receptor kinase BHippocampal formationgenetics [Carrier Proteins]pharmacology [Brain-Derived Neurotrophic Factor]Hippocampusmetabolism [Vesicular Inhibitory Amino Acid Transport Proteins]Mtap2 protein ratMice0302 clinical medicineNeurotrophic factorsdrug effects [Synaptic Vesicles]genetics [Nerve Tissue Proteins]Cells Culturedultrastructure [Neurons]NeuronsChemistryLong-term potentiationSynaptic Potentialsphysiology [Neurons]physiology [Dendritic Spines]Cell biologyultrastructure [Dendritic Spines]metabolism [Receptor trkB]Synaptic VesiclesFilopodiaultrastructure [Synaptosomes]Disks Large Homolog 4 ProteinMicrotubule-Associated ProteinsCognitive NeuroscienceDendritic Spinesmetabolism [Disks Large Homolog 4 Protein]Nerve Tissue Proteinsgenetics [Receptor trkB]03 medical and health sciencesCellular and Molecular NeuroscienceOrgan Culture Techniquesphysiology [Synaptic Vesicles]metabolism [Vesicular Glutamate Transport Protein 1]TrkB protein ratdrug effects [Synaptic Potentials]Synaptic vesicle recyclingAnimalsHumansReceptor trkBddc:610metabolism [Synaptosomes]metabolism [Nerve Tissue Proteins]Viaat protein ratBrain-Derived Neurotrophic Factormetabolism [Microtubule-Associated Proteins]Rats030104 developmental biologygenetics [Synaptic Potentials]nervous systemcytology [Hippocampus]Synaptic plasticityultrastructure [Synapses]SynapsesVesicular Glutamate Transport Protein 1CPNE6 protein ratphysiology [Synapses]Carrier Proteins030217 neurology & neurosurgerymetabolism [Carrier Proteins]SynaptosomesCerebral cortex (New York, N.Y. : 1991)
researchProduct

Autophagy is required for sea urchin oogenesis and early development.

2016

SummaryAutophagy is a major intracellular pathway for the degradation and recycling of cytosolic components. Emerging evidence has demonstrated its crucial role during the embryo development of invertebrates and vertebrates. We recently demonstrated a massive activation of autophagy in Paracentrotus lividus embryos under cadmium stress conditions, and the existence of a temporal relationship between induced autophagy and apoptosis. Although there have been numerous studies on the role of autophagy in the development of different organisms, information on the autophagic process during oogenesis or at the start of development in marine invertebrates is very limited. Here we report our recent …

0301 basic medicineEmbryo NonmammalianFluorescent Antibody TechniqueCaspase 3ApoptosisFertilization in VitroBiologyParacentrotus lividus03 medical and health sciencesbiology.animalOrganelleBotanyAutophagyAnimalsSettore BIO/06 - Anatomia Comparata E CitologiaSea urchinLC3 Caspase-3 Embryos Oocytes Paracentrotus lividusAutophagyEmbryoCell BiologyMarine invertebratesbiology.organism_classificationCell biology030104 developmental biologyOocytesParacentrotusMacrolidesMicrotubule-Associated ProteinsIntracellularDevelopmental BiologyZygote (Cambridge, England)
researchProduct

Hsp40 Is Involved in Cilia Regeneration in Sea Urchin Embryos

2003

In a previous paper we demonstrated that, in Paracentrotus lividus embryos, deciliation represents a specific kind of stress that induces an increase in the levels of an acidic protein of about 40 kD (p40). Here we report that deciliation also induces an increase in Hsp40 chaperone levels and enhancement of its ectodermal localization. We suggest that Hsp40 might play a chaperoning role in cilia regeneration.

0301 basic medicineEmbryo NonmammalianHistologyParacentrotus lividus03 medical and health sciences0302 clinical medicineStress PhysiologicalCulture Techniquesbiology.animalEctodermBotanyAnimalsRegenerationElectrophoresis Gel Two-DimensionalCiliaSettore BIO/06 - Anatomia Comparata E CitologiaSea urchinHeat-Shock ProteinsCentrosomebiologyCiliumEmbryoHSP40 Heat-Shock ProteinsSea urchin embryobiology.organism_classificationHsp40 deciliation sea urchinCell biology030104 developmental biologySea UrchinsAnatomy030217 neurology & neurosurgeryMolecular Chaperones
researchProduct

Nickel toxicity in P. lividus embryos: Dose dependent effects and gene expression analysis.

2018

Abstract Many industrial activities release Nickel (Ni) in the environment with harmful effects for terrestrial and marine organisms. Despite many studies on the mechanisms of Ni toxicity are available, the understanding about its toxic effects on marine organisms is more limited. We used Paracentrotus lividus as a model to analyze the effects on the stress pathways in embryos continuously exposed to different Ni doses, ranging from 0.03 to 0.5 mM. We deeply examined the altered embryonic morphologies at 24 and 48 h after Ni exposure. Some different phenotypes have been classified, showing alterations at the expenses of the dorso-ventral axis as well as the skeleton and/or the pigment cells…

0301 basic medicineEmbryo NonmammalianPigment cellmRNASettore BIO/05 - ZoologiaEmbryonic DevelopmentGene ExpressionDevelopmentAquatic ScienceOceanographyParacentrotus lividus03 medical and health sciencesNickelGene expressionAnimalsInvertebrateProtein kinase AGeneSkeletonEchinodermbiologyAnimalChemistryStress responseEmbryoGeneral Medicinebiology.organism_classificationPollutionPhenotypeCell biologyHeavy metal030104 developmental biologyToxicityUnfolded protein responseParacentrotusParacentrotuWater Pollutants ChemicalMarine environmental research
researchProduct